K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

Đặt: \(\sqrt{2x+1}=a;\dfrac{1}{\left|y+3\right|}=b\left(a\ge0;b>0\right)\)

Hệ Phương trình lúc này trở thành:

\(\left\{{}\begin{matrix}a+2b=3\\2a+\dfrac{3}{4}b=5\end{matrix}\right.\)

Dễ dàng giải đc hệ pt trên và tìm ra a,b rồi suy ra x,y

P.s: Bạn lm tiếp đc chứ ??

NV
18 tháng 6 2021

ĐKXĐ:...

Từ pt đầu:

\(\Leftrightarrow y^2+y\sqrt{y^2+1}=x-2y+\dfrac{1}{2}\)

\(\Leftrightarrow y^2+1+2y\sqrt{y^2+1}+y^2=2x-4y+2\)

\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=2x-4y+2\)

\(\Leftrightarrow\sqrt{y^2+1}+y=\sqrt{2x-4y+2}\)

Thế xuống pt dưới:

\(x+\sqrt{x^2-2x+5}=1+2\sqrt{y^2+1}+2y\)

\(\Leftrightarrow\left(x-1\right)+\sqrt{\left(x-1\right)^2+4}=2y+\sqrt{\left(2y\right)^2+4}\)

Do hàm \(t+\sqrt{t^2+4}\) đồng biến

\(\Leftrightarrow x-1=2y\Rightarrow x=2y+1\)

Thế vào pt đầu:

\(\left(y+1\right)^2+y\sqrt{y^2+1}=2y+\dfrac{5}{2}\)

\(\Leftrightarrow y^2+y\sqrt{y^2+1}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=4\)

\(\Leftrightarrow\sqrt{y^2+1}+y=2\)

\(\Leftrightarrow\sqrt{y^2+1}=2-y\)

\(\Leftrightarrow...\)

NV
20 tháng 7 2021

b.

\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)

\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)

Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)

Pt trở thành:

\(\dfrac{t^2}{2}-4+t=0\)

\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)

Pt trở thành:

\(\dfrac{1}{t^2}+2t=3\)

\(\Rightarrow2t^3-3t^2+1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)

Kiểm tra lại vế trái đề bài câu b

1 tháng 5 2021

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

1 tháng 5 2021

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...