Cho một hình nón có bán kính đáy là r= 4 cm, diện tích đáy bằng 4/5 diện tích xung quanh của nó. Tính thể tích hình nón đã cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo bài ra ta có:
$\pi rl=2\pi r^2$
$\Rightarrow l=2r=6$ (cm)
Mà theo định lý Pitago: $l^2=h^2+r^2$
$\Rightarrow h=\sqrt{l^2-r^2}=3\sqrt{3}$ (cm)
Thể tích hình nón:
$V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi. 3^2.3\sqrt{3}=9\sqrt{3}\pi$ (cm3)
a) Đường sinh l của hình nón là:
l = = = 5√41 (cm).
Diện tích xung quanh của hình nón là:
Sxq = πrl = 125π√41 (cm2)
b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)
c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.
GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.
Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)