K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2022

Gọi O là tâm đáy, từ O kẻ \(OH\perp SC\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\) \(\Rightarrow BD\perp SC\)

\(\Rightarrow SC\perp\left(BDH\right)\Rightarrow\left\{{}\begin{matrix}SC\perp BH\\SC\perp DH\end{matrix}\right.\) góc giữa BH và DH là góc \(\alpha\) giữa (SCD) và (SBC)

\(BD=a\sqrt{2}\) ; \(SB=SD=a\sqrt{2}\)

Hệ thức lượng trong tam giác vuông SBC:

\(BH=\dfrac{SB.BC}{\sqrt{SB^2+BC^2}}=\dfrac{a\sqrt{6}}{3}\), tương tự \(DH=\dfrac{a\sqrt{6}}{3}\)

\(\Rightarrow cos\alpha=\left|cos\widehat{BHD}\right|=\left|\dfrac{BH^2+DH^2-BD^2}{2BH.DH}\right|=\dfrac{1}{2}\)

\(\Rightarrow\alpha=60^0\)

NV
19 tháng 4 2022

undefined

20 tháng 6 2017

Đáp án D

22 tháng 2 2021

S A B C D K

gọi K thuộc SC sao cho DK ​​\(\perp\) SC , BK \(\perp\)SC

=> ((SCD),(SBC)) = (DK,KB)

tính được SD = \(\frac{\sqrt{10}}{2}\)a, AC = \(\sqrt{3}\)a, SC= \(\frac{3\sqrt{2}}{2}\)a

\(DC^2=SD^2+SC^2-2SD.SC.cos\widehat{DSC}\)

=> \(\widehat{DSC}\)=....... (số xấu)

\(sin\widehat{DSC}\)\(\frac{DK}{SD}\)=> DK = \(\frac{\sqrt{2}}{2}\)=BK

\(DB^2=DK^2+BK^2-2.DK.BK.cos\alpha\)=> \(\alpha=\frac{\pi}{2}\)

22 tháng 2 2021

quản lí hỏi để thử tài học sinh à

15 tháng 7 2018

Đáp án C.

Kẻ C H ⊥ A B .

Bằng tính toán hình thang vuông thông thương ta có được:

2 tháng 10 2018

Đáp án A

Dựng trục tọa độ với   A 0 ; 0 ; 0 ;   0 ; 4 a ; 0 ;   S 0 ; 0 ; 2 a 3

Ta có:   A H = A B sin 60 0 = 3 a 3 2 ;   B H = 3 a 2

Do đó   B = 3 a 3 2 ; − 3 a 2 ; 0 ;   C 3 a 3 2 ; 5 a 2 ; 0

Khi đó   n S B C ¯ = k S B ¯ ; B C ¯ = 4 ; 0 ; 3 ;   n S C D ¯ = k S C ¯ ; D C ¯ = 3 ; 3 ; 2 3

Do đó   cos S B C ; S C D ^ = 10 3 4 2 + 3 2 24 = 1 2 ⇒ S B C ; S C D ^ = 45 0

4 tháng 11 2019

 

 

30 tháng 10 2018

12 tháng 9 2018

8 tháng 5 2019

28 tháng 9 2017