Cho hình bình hành ABCD có góc nhọn A. Kẻ BH, CM, CN, DI lần lượt vuông góc với AC, AB, AD và AC.
a. Chứng minh AH = CI.
b. Tứ giác BIDH là hình gì?.
c. Chứng minh AB.CM = CN.AD.
d. Chứng minh AD.AN + AB.AM = AC2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABH và tam giác CID có :
AB = CD ( gt )
\(\widehat{AHB}=\widehat{CID}=90^0\)
\(\widehat{BAH}=\widehat{ICD}\)
\(\Rightarrow\)\(\Delta ABH=\Delta CID\left(g-c-g\right)\)
\(\Rightarrow\)\(AH=CI\)
c) \(CM\perp AB\Rightarrow CM\perp CD\)
\(CN\perp AD\Rightarrow CN\perp BC\)
Xét tam giác BCM và tam giác CDN có :
\(\widehat{BMC}=\widehat{CND}\)
\(\widehat{MCB}=\widehat{DCN}\)
Suy ra tam giác BCM = tam giác CDN
\(\Rightarrow\)\(\frac{BC}{DC}=\frac{CM}{CN}\)
mà BC = AD và DC = AB
Suy ra AB.CM = CN.AD
a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có
góc B=góc D
=>ΔBMC đồng dạng vớiΔDNC
b: Bạn ghi lại đề đi bạn
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
a: Xét tứ giác ADHB có
\(\widehat{DAB}=\widehat{ADH}=\widehat{BHD}=90^0\)
Do đó: ADHB là hình chữ nhật
mà AB=AD
nên ADHB là hình vuông
a: Xét ΔHBA vuông tại H và ΔIDC vuông tại I có
BA=DC
góc HAB=góc ICD
=>ΔHBA=ΔIDC
=>AH=IC
b: Xét tứ giác BHDI có
BH//DI
BH=DI
=>BHDI là hình bình hành
c; S CAB=AB*CM/2
S DAC=1/2*CN*AD
mà ΔCAB=ΔDAC
nên AB*CM=CN*AD