B1:C/m
a)\(\dfrac{a^2+b^2}{2}\)\(>=ab\)
b)(a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4\) (với a>0,b>0)
c)\(a\left(a+2\right)< \left(a+1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1.
BĐT cần chứng minh tương đương:
\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)
Ta có:
\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)
\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)
Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)
\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)
Do \(a;b;c\ge1\) nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:
\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)
\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Câu 2 em kiểm tra lại đề có chính xác chưa
2.
Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS
Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)
\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)
BĐT cần chứng minh tương đương:
\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
Đúng theo (1)
Dấu "=" xảy ra khi \(a=b=c\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:
Phân tích và giải
Dễ thấy: Dấu "=" khi \(a=b=c=1\)
\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)
Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
Ta sẽ chia làm 2 bước cm:
B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :
\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)
\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)
\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)
\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)
Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))
\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)
B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)
Tự cm nhé Goodluck :v
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)
\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
a.
Giả sử: \(\dfrac{a^2+b^2}{2}\ge ab\) ( đúng )
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Vậy \(\dfrac{a^2+b^2}{2}\ge ab\)
b.Giả sử: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) ( đúng )
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{ab}\ge4\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)