Bài 6: Cho tam giác ABC, biết rằng số đo các góc tỉ lệ với 2, 3, 4. Số đo của góc A là:
A. 20°
B. 40°
C. 60°
D. 80°
Các bạn giải rõ cách làm cho mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\dfrac{180^0}{9}=20^0\\ \Rightarrow\widehat{C}=20^0.4=80^0\)
Chọn D
Gọi x;y;z lần lượt là các góc của tam giác ABC:
X/3=Y/4=Z/5 và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
X/3=Y/4=Z/5=X+Y+Z/3+4+5=180/12=15
*X/3=15 SUY RA X=3 X 15 = 45
*Y/4=15 SUY RA Y= 4 X 15=60
*Z/5 =15 SUY RA Z=5 X 15 =75
Vây x=45
y=60
z=75
Gọi số đo các góc lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5};a+b+c=180\)( Định lý tổng 3 góc của tam giác bạn nhé )
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\)\(a=15.3=45\)
\(b=15.4=60\)
\(c=15.5=75\)
Vậy số đo các góc của tam giác lần lượt là 45 độ ; 60 độ ; 75 độ
Nếu bạn không tin thì có thể lấy ba số : 45 + 60 + 75 = 180 độ ( đúng bạn nhé )
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^0}{15}=12^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=60^0\\\widehat{C}=84^0\end{matrix}\right.\)
REFER
B?