Cho pt :m(x+1)-2x = m2+m-4.Tìm m sao cho:
a, Pt nhận 1 làm nghiệm
b, Pt có nghiệm
c, Pt vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)
a. Phương trình có nghiệm khi:
\(\Delta'\ge0\Rightarrow m\le3\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)
c.
\(x_1^2+x_2^2-x_1x_2=22\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)
\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)
\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
\(a,\Leftrightarrow\Delta=\left(-2\right)^2-4\left(2m-1\right)\ge0\\ \Leftrightarrow4-8m+4\ge0\\ \Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\\ b,\Leftrightarrow\Delta=8-8m>0\Leftrightarrow m< 1\\ c,\Leftrightarrow\Delta=8-8m=0\Leftrightarrow m=1\\ d,\Leftrightarrow\Delta=8-8m< 0\Leftrightarrow m>1\)
a,để pt có nghiệm kép
\(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)
\(x_1=x_2=\dfrac{2m}{2}=m=1\)
b, để pt có nghiệm \(m\ge1\)
c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)
Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)
\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)
a: Để phương trình có nghiệm thì 4-4(m-1)>=0
=>4(m-1)<=4
=>m-1<=1
hay m<=2
b: Thay x=3 vào pt, ta được:
9-6+m-1=0
=>m+2=0
hay m=-2
Lời giải:
PT $\Leftrightarrow x(m-2)=m^2-4$
a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$
$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$
$\Leftrightarrow (m-2)(m+2-1)=0$
$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$
b) Để pt có nghiệm thì:
\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$
Vậy pt có nghiệm với mọi $m\in\mathbb{R}$
c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.