Cho hình lập phương ABCD.A'B'C'D'. Tính góc giữa hai đường thẳng AB' và A'C'.
A. 600
B. 300
C. 450
D. 900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{BD}.\overrightarrow{D'C}=\overrightarrow{BD}\left(\overrightarrow{D'D}+\overrightarrow{DC}\right)=\overrightarrow{BD}.\overrightarrow{D'D}+\overrightarrow{BD}.\overrightarrow{DC}\)
\(=\overrightarrow{BD}.\overrightarrow{DC}=-\overrightarrow{DB}.\overrightarrow{DC}=-a\sqrt{2}.a.cos45^0=-a^2\)
Đáp án C
Nhận thấy chóp ACD′B′ có tất cả các
cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là
trọng tâm của tam giác AB′C′.
Chóp ACD′B′ nhận D′G là đường cao.
Xét tam giác AB′C′ có
C
\(A'C'||AC\Rightarrow\) góc cần tìm là góc \(\widehat{CAB'}\)
Mặt khác \(AB'=AC=B'C\) (các đường chéo của hình vuông bằng nhau)
\(\Rightarrow\Delta AB'C\) đều
\(\Rightarrow\widehat{CAB'}=60^0\)