1. Cho hình thang cân ABCD có AB//DC và AB<DC, đường chéo BD vuông góc với cạnh BC. Vẽ đường cao BH
a/ Chứng minh ΔBDC ∽Δ HBC
b/ Cho BC=15, DC = 25cm. Tính HC, HD
c/ Tính diện tích hình thang ABCD
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng vói ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
a:Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng với ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
Vì \(AB//CD\Rightarrow\hept{\begin{cases}\widehat{OAB}=\widehat{ODC}\\\widehat{OBA}=\widehat{OCD}\end{cases}}\)(đồng vị)
Vì \(OA=OB\Rightarrow\Delta OAB\)cân tại O
\(\Rightarrow\widehat{OAB}=\widehat{OBA}\)
\(\Rightarrow\widehat{ODC}=\widehat{OCD}\)
Xét hình thang ABCD ,có:
\(\widehat{OCD}=\widehat{ODC}\)
\(\Rightarrow ABCD\)là hình thang cân
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{BCA}=\widehat{DCA}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
a) Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
\(\widehat{BCD}\) chung
Do đó: ΔBDC\(\sim\)ΔHBC(g-g)