tìm x:
\(x.\frac{1}{2}=\frac{1}{2}+\frac{2}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
Đk:\(x\ne0;1;2;3;4\)
\(pt\Leftrightarrow\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x}=2-\frac{1}{4-x}\)\(\Leftrightarrow\frac{4}{x\left(x-4\right)}=\frac{2x-7}{x-4}\)
Dễ thấy \(x\ne4\) nên nhân 2 vế của pt vừa biến đổi với \(x-4\) ta dc:
\(\Leftrightarrow\frac{4}{x}=2x-7\Leftrightarrow x\left(2x-7\right)=4\)
\(\Leftrightarrow2x^2-7x=4\Leftrightarrow2x^2-7x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)\(\Leftrightarrow x=-\frac{1}{2}\left(x\ne4\right)\)
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
\(x-\frac{3}{4}-x.\frac{2}{3}+x:\frac{1}{2}-x:\frac{2}{5}=\frac{11}{4}\)
\(x-x.\frac{2}{3}+x.2-x.\frac{5}{2}=\frac{11}{4}+\frac{3}{4}\)
\(x\left(1-\frac{2}{3}+2-\frac{5}{2}\right)=\frac{7}{2}\)
\(x.\frac{-1}{6}=\frac{7}{2}\)
\(x=\frac{7}{2}:-\frac{1}{6}\)
\(x=-21\)
Vậy \(x=-21\)
\(x.\frac{1}{2}=\frac{1}{2}+\frac{2}{4}\)
\(x.\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}:\frac{1}{2}\)
\(x=\frac{3}{2}\)
3/2 nha bạn