cho BPT \(x^2-6x+2\left(m+2\right)\left|x-3\right|+m^2+4m+12>0\). Có bao nhiêu giá trị nguyên m thuộc [-10;10] để BPT thỏa mãn với mọi x \(\in\) (-2;5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=x^2-2x+3\left(t\ge2\right)\)
Phương trình trở thành \(f\left(t\right)=t^2+2\left(3-m\right)t+m^2-6m=0\left(1\right)\)
Phương trình \(\left(1\right)\) có nghiệm \(t_1\ge t_2\ge2\) khi:
\(\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{t_1+t_2}{2}\ge2\\1.f\left(2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-m\right)^2-m^2+6m\ge0\\m-3\ge2\\m^2-10m+16\ge0\end{matrix}\right.\)
Giải ra tập giá trị của m rồi lấy các giá trị thuộc \(\left[-10;10\right]\)
\(\Leftrightarrow\) Với mọi \(x>0\) ta luôn có:
\(x^3-x^2-2x+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+m\right)\ge0\)
\(\Leftrightarrow x^2-2x+m\ge0\) (do \(x+1>0\) ; \(\forall x>0\))
\(\Leftrightarrow m\ge-x^2+2x\)
\(\Leftrightarrow m\ge\max\limits_{x>0}\left(-x^2+2x\right)=1\)
\(\Rightarrow m=\left\{1;2;3;4;...;10\right\}\)
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)
\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)
Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).
\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)
...
Bạn tham khảo:
Cho bất phương trình x2-6x +2(m+2)|x-3| +m2 +4m +12 >0có bao nhiêu giá trị nguyên của m ϵ [-10;10] để bất phương tình... - Hoc24