Từ điểm A nằm ngoài (O; R) (OA > 2R), vẽ hai tiếp tuyến AB, AC với (O) (B,C là 2 tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp và OA vuông góc với BC tại H.
b) Gọi M là trung điểm AC, BM cắt (O) tại E. Chứng minh: MC^2=ME.MB và MAE=MBA.
c) AE cắt đường tròn (O) tại F. Đường thẳng qua E và vuông góc với OB cắt BC tại I và cắt BF tại K. Chứng minh: I trung điểm EK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
a) Xét tứ giác ODAE có
\(\widehat{ODA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{ODA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ODAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,D,A,E cùng nằm trên 1 đường tròn(1)
Xét tứ giác OIAE có
\(\widehat{OIA}\) và \(\widehat{OEA}\) là hai góc đối
\(\widehat{OIA}+\widehat{OEA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OIAE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: O,I,A,E cùng nằm trên 1 đường tròn(2)
Từ (1) và (2) suy ra 5 điểm A,D,I,O,E cùng nằm trên 1 đường tròn(đpcm)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tia MB cắt đoạn thẳng AO tại điểm B nằm giữa A và O nên tia MB nằm giữa hai tia MA, MO (hay tia MB nằm giữa hai tia MA, MN).
Vì tia MB nằm giữa hai tia MA, MN nên tia MB cắt đoạn thẳng AN tại điểm C nằm giữa hai điểm A, N.
Vậy tia MB cắt tia AN tại điểm C nằm giữa A, N.
+C/m: góc KBC=góc BCA =góc CBA= góc BIK ->tg KBI cân K
+C/m: tg MBA dd tgBEK (g.g) ->MA/BK =AB/EK
->AC/2BK=AB/EK
->2BK=EK -> 2KI = EK -> đpcm