K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
17 tháng 9 2016

Đề bài:
Tìm một số tự nhiên có 3 chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó

Giải:
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

17 tháng 9 2016

mk nghĩ cách này ngắn hơn

gọi số đó là abc ( đk a khác 0)

ta có :  abc = 5.a.b.c

      a.100 + b.10 + c = 5.a.b.c

=> c chia hết cho 5

20a +2b +1 =5.a.b (<=> (5a- 2)(4-b) +9=0 => b>4) 


2b+1 chia het cho 5 => b=2,7( 2 loại) 


b=7 => a=1 


vậy số đó là 175

có đúng ko 

đúng thì  v nhé

23 tháng 4 2017

Cách 1 :       Gọi số phải tìm là abc. Theo bài ra ta có

                   abc = 5 x a x b x c.

          Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có.

                   100 x a + 10 x b + 5 = 25 x a x b.

                   20 x a + 2 x b +1 = 5 x a x b.

          Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.

          - Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.

          - Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.

Thử lại :

                   175 = 5 x 7 x 5.

Vậy số phải tìm là 175.

Cách 2 :

          Tương tự cach 1 ta có :

                   ab5 = 25 x a x b

                    Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nêna, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

4 tháng 2 2019

Cách 1:

Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nh
ưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nh
ưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
T
ương tự cach 1 ta có:
ab5 = 25 x a x b

Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

21 tháng 2 2019

Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 × a × b × c.
Vì a × 5 × b × c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 × a + 10 × b + 5 = 25 × a × b.
20 × a + 2 × b +1 = 5 × a × b.
Vì a × 5 × b chia hết cho 5 nên 2 × b + 1 chia hết cho 5. Vậy 2 × b có tận cùng bằng 4 hoặc 9, nhưng 2 × b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 × a × 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 × a + 15 = 35 × a. Tính ra ta được a = 1.
Thử lại: 175 = 5 × 7 × 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 × a × b

Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

23 tháng 10 2017

Giải :

Cách 1 :      Gọi số phải tìm là abc. Theo bài ra ta có

                   abc = 5 x a x b x c.

          Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có.

                   100 x a + 10 x b + 5 = 25 x a x b.

                   20 x a + 2 x b +1 = 5 x a x b.

          Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.

          - Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.

          - Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.

Thử lại :

                   175 = 5 x 7 x 5.

Vậy số phải tìm là 175.

Cách 2 :

          Tương tự cach 1 ta có :

                   ab5 = 25 x a x b

 

          Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nêna, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

29 tháng 7 2017

Gọi số phải tìm là abc. Theo bài ra ta có abc = 5 x a x b x c.

Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có.

100 x a + 10 x b + 5 = 25 x a x b. 20 x a + 2 x b +1 = 5 x a x b.

Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.

- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn.

Vậy trường hợp b = 2 bị loại.

- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.

Thử lại :

175 = 5 x 7 x 5.

Vậy số phải tìm là 175.

15 tháng 4 2023

175

 

3 tháng 2 2017

Gọi số đó là abc 

=> 100a + 10b + c = 5.a.b.c 

=> c chia hết cho 5 =>c = 5 

20a + 2b + 1 = 5.a.b ( <=> ( 5a - 2 )( 4 - b ) + 9 = 0 => b > 4) 

2b + 1 chia hết cho 5 => b = 2,7 ( 2 loai ) 

b = 7 => a = 1 

Thử lại : 1 x 7 x 5 = 35 ; 175 : 35 = 5

Vậy số đó là 175

11 tháng 8 2017

chắc thê

1 tháng 9 2016

Gọi số đó là abc
=> 100a+10b+c = 5.a.b.c 
=> c chia het cho 5 =>c=5 
20a +2b +1 =5.a.b (<=> (5a- 2) (4-b) +9=0 => b>4) 
2b+1 chia het cho 5 => b=2,7(2 loai) 
b=7 => a=1 
Vậy số cần tìm là  175

1 tháng 9 2016

Gọi số đó là abc.Ta có 

abc = a x b x c x5

Từ đó ta thấy abc phải chia hết cho 5 =>c=5 vì nếu c= 0 thì a x b x c x 0=0

Vậy abc = a x b x5 x 5= a x b x 25 =>abc chia hết cho 25

Để ab5 chia hết cho 25 thì b = 2 hoặc b=7 

Nếu b = 2 thì a25 =a x 2 x 5 x 5 (loại ) vì a x 2 x 5 x 5 có hàng đơn vị là 0

Nếu b =7 thì a75 = a x 7 x 5 x 5

                   a x 100+ 75= a x 175

                   75              = a x 75

                   75 :75        = a =>a =1

Vậy số cần tìm là : 175

17 tháng 9 2016

  goi so do la abc 
=> 100a+10b+c = 5.a.b.c 
=> c chia het cho 5 =>c=5 
20a +2b +1 =5.a.b (<=> (5a- 2)(4-b) +9=0 => b>4) 
2b+1 chia het cho 5 => b=2,7(2 loai) 
b=7 => a=1 
vay so do la 175

17 tháng 9 2016

Tìm một số tự nhiên có 3 chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó

Giải:
Cách 1:
Gọi số phải tìm là abc. Theo bài ra ta có
abc = 5 x a x b x c.
Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có:
100 x a + 10 x b + 5 = 25 x a x b.
20 x a + 2 x b +1 = 5 x a x b.
Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7.
- Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại.
- Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1.
Thử lại: 175 = 5 x 7 x 5.
Vậy số phải tìm là 175.
Cách 2:
Tương tự cach 1 ta có:
ab5 = 25 x a x b
Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nên a, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175.

11 tháng 4 2018

gọi số đó là abc ( đk a khác 0) ta có :  

abc = 5.a.b.c      

a.100 + b.10 + c = 5.a.b.c

=> c chia hết cho 5 20a +2b +1 =5.a.b

(<=> (5a- 2)(4-b) +9=0 => b>4)  2b+1 chia het cho 5

=> b=2,7( 2 loại)  b=7 => a=1 

vậy số đó là 175