so sánh: M= \(\dfrac{101^{102}+1}{101^{103}+1}\) và N= \(\dfrac{101^{103+1}}{101^{104}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\dfrac{1}{M}=\dfrac{101^{103}+1}{101^{102}+1}=\dfrac{101^{103}+101-100}{101^{102}+1}=1-\dfrac{100}{101^{102}+1}\)
\(\dfrac{1}{N}=\dfrac{101^{104}+1}{101^{103}+1}=\dfrac{101^{104}+101-100}{101^{103}+1}=1-\dfrac{100}{101^{103}+1}\)
vì \(\dfrac{100}{101^{102}+1}>\dfrac{100}{101^{103}+1}\Rightarrow1-\dfrac{100}{101^{102}+1}< 1-\dfrac{100}{101^{103}+1}\Rightarrow\dfrac{1}{M}< \dfrac{1}{N}\Rightarrow M>N\)
M=101^102+1/101^103+1
M=101^102+1/101^102*101+1
M=1/101+2
M=1/102
N=101^103+1/101^104+1
N=101^103+1/101^103*101+1
N=1/101+1
N=1/102
Vậy N=M
\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)
=> N < M
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà : N = \(\frac{101^{103}+1}{101^{104}+1}\)< M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)
\(\Rightarrow N< M\)
Ta có : \(101M=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+100+1}{101^{103}+1}=1+\frac{100}{101^{103}+1};\)
\(101N=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\Rightarrow1+\frac{100}{101^{103}+1}>1+\frac{100}{101^{104}+1}\Rightarrow101M>101N\)
=> M > N
So sánh M và N biết rằng :
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(N=\frac{101^{103}+1}{101^{104}+1}\)
ta có bổ đề sau .với\(\frac{a}{b}>0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
mà \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}\)
\(=\frac{101\left(101^{102+1}\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
vậy \(M>N\)
Ta có: \(N=\frac{101^{103}+1}{101^{104}+1}< \frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà: \(\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)
Ta có: \(N< \frac{101^{103}+1+100}{101^{104}+1+100};\frac{101^{103}+1+100}{101^{104}+1+100}=M\)
=> N<M
=>
giải giúp mink với
M > N