K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là tia phân giác

b: ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

c: Xét tứ giác ADEH có

B là trung điểm của AE

B là trung điểm của DH

Do đó: ADEH là hình bình hành

Suy ra: AH//DE

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác AHED có

B là trung điểm chung của AE và HD

=>AHED là hình bình hành

=>DE//AH

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔACH

b: Xét tứ giác AHED có

B là trung điểm chung của AE và HD

=>AHED là hình bình hành

=>DE//AH

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) Xét tam giác $AHB$ và $AHC$ có:

$AH$ chung

$AB=AC$ do $ABC$ cân tại $A$

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)

b) 

Vì $ABC$ cân tại $A$ nên $\widehat{ABC}=\widehat{ACB}$

$\Rightarrow 180^0-\widehat{ABC}=180^0-\widehat{ACB}$ 

hay $\widehat{ABD}=\widehat{ACE}$ 

Xét tam giác $ABD$ và $ACE$ có:

$BD=CE$

$AB=AC$

$\widehat{ABD}=\widehat{ACE}$ (cmt)

$\Rightarrow \triangle ABD=\triangle ACE$ (c.g.c)

$\Rightarrow AD=AE$ nên $ADE$ là tam giác cân.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Hình vẽ:

undefined