(học sinh giải thích vì sao chọn đáp án đó)
câu 15 : Cho tam giác ABC có AB = 3cm, AC = 4cm , BC = 5cm. Bán kính đường tròn ngoại tiếp tam giác ABC là:
A. 5 cm
B. 2,5 cm
C. 10 cm
D. 3cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: I là tâm đường tròn ngoại tiếp ΔHAB(gt)
mà ΔHAB vuông tại H(gt)
nên I là trung điểm của AB
\(\Leftrightarrow AI=\dfrac{AB}{2}=\dfrac{3}{2}=1.5\left(cm\right)\)
Ta có: K là tâm đường tròn ngoại tiếp ΔHAC(gt)
mà ΔHAC vuông tại H(gt)
nên K là trung điểm của AC
\(\Leftrightarrow AK=\dfrac{AC}{2}=\dfrac{4}{2}=2\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAKI vuông tại A, ta được:
\(AK^2+AI^2=IK^2\)
\(\Leftrightarrow KI^2=1.5^2+2^2=6.25\)
hay KI=2,5(cm)
Vậy: KI=2,5cm
a) tứ giác ADOE là hình vuông
vì \(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)
và OD = OE = R
a. \(BC^2=AB^2+AC^2\) nên ABC vuông tại A
b. Hệ thức lượng: \(AH=\dfrac{AB\cdot AC}{BC}=2,4\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
\(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A với BC là cạnh huyền
\(\Rightarrow\) Bán kính đường tròn ngoại tiếp tam giác ABC bằng 1 nửa BC
\(R=\dfrac{5}{2}=2,5\left(cm\right)\)
b