K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

Gọi A là biểu thức ta có: 
A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

14 tháng 9 2016

BÀI 1 

A = 1 + 2 + 3 + ....+ 1596

A = ( 1596 + 1 ) . ( 1596 - 1 ) : 1 + 1 : 2

A = 1597 . 1596

A = 2548812

BÀI 2

A = 1 . 2 + 2 . 3 + 3. 4 + .. + 99 . 100

A = 2 + 6 + 12 + 20 + 30 + 42 + 56 + 72 + 90

A = 330

CHÚC BẠN HỌC TỐT ^ _ ^ 

MK GIÚP BẠN NÊN BẠN CHO MK NHA 

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

1 tháng 9 2015

a)\(A=\frac{n.\left(n+1\right)}{2}\)

b)B=1.2+2.3+3.4+...+99.100

=>B.3=1.2.3+2.3.3+3.4.3+...+99.100.3

=>B.3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

=>B.3=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=>B.3=99.100.101

=>\(=>B=\frac{99.100.101}{3}=\frac{999900}{2}=499950\)

9 tháng 7 2015

a,A = 1+2+3+…+(n-1)+n

A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3

A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3

A = 99.100.101 A = 333300

Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3

25 tháng 9 2018

a,số hạng của tổng là mở ngoặc 2n-1  đóng ngoặc chia 2+1                                                                                                                               = mở ngoặc 2n-2 chia 2+1                                                                                                                                                                                   = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1                                                                                                                                                       = n-1+1=n vậy tổng  là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ  chia  = n nhân  mũ  chia  = n

2 tháng 9 2015

a) không biết

b) B = 1.2 + 2.3 + 3.4 + ... + 99.100

3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

      = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)

      = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101

      = 99.100.101 = 999900

3.B = 999900

B = 333300

2 tháng 9 2015

333300                     

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

10 tháng 11 2017

câu 1

Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath

c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)

\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)

\(\Leftrightarrow A=33\cdot100\cdot101=333300\)

 

b) Ta có: \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=-4\cdot25=-100\)