bài 1cho a = 1+2+3+...+n
Tính tổng A
tìm n biết a= 1596
bài 2
tính a= 1.2+2.3+3.4+...+99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
a)\(A=\frac{n.\left(n+1\right)}{2}\)
b)B=1.2+2.3+3.4+...+99.100
=>B.3=1.2.3+2.3.3+3.4.3+...+99.100.3
=>B.3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>B.3=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=>B.3=99.100.101
=>\(=>B=\frac{99.100.101}{3}=\frac{999900}{2}=499950\)
a,A = 1+2+3+…+(n-1)+n
A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3
A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3
A = 99.100.101 A = 333300
Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3
a,số hạng của tổng là mở ngoặc 2n-1 đóng ngoặc chia 2+1 = mở ngoặc 2n-2 chia 2+1 = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1 = n-1+1=n vậy tổng là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ chia = n nhân mũ chia = n
a) không biết
b) B = 1.2 + 2.3 + 3.4 + ... + 99.100
3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101
= 99.100.101 = 999900
3.B = 999900
B = 333300
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
BÀI 1
A = 1 + 2 + 3 + ....+ 1596
A = ( 1596 + 1 ) . ( 1596 - 1 ) : 1 + 1 : 2
A = 1597 . 1596
A = 2548812
BÀI 2
A = 1 . 2 + 2 . 3 + 3. 4 + .. + 99 . 100
A = 2 + 6 + 12 + 20 + 30 + 42 + 56 + 72 + 90
A = 330
CHÚC BẠN HỌC TỐT ^ _ ^
MK GIÚP BẠN NÊN BẠN CHO MK NHA