K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(-4)^2-4(m^2+3m)

=16-4m^2-12m

=-4(m^2+3m-4)

=-4(m+4)(m-1)

Để phươg trình có hai nghiệm thì Δ>=0

=>-4(m+4)(m-1)>=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

x1^2+x2^2=6

=>(x1+x2)^2-2x1x2=6

=>4^2-2(m^2+3m)=6

=>16-2m^2-6m-6=0

=>-2m^2-6m+10=0

=>m^2+3m-5=0

=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)

NV
9 tháng 1 2023

\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)

\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)

\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

1 tháng 8 2018

Đáp án B

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

NV
14 tháng 4 2021

\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)

Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)

\(P=\left(2m+1\right)^2+11\ge11\)

\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

27 tháng 6 2019

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13

8 tháng 6 2018

Đáp án A

31 tháng 12 2017

Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1  0 và  = 4 m 2 – 4 (2m – 1)

= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2   ≥ 0 ;   ∀ m

Phương trình có hai nghiệm x 1 ;   x 2 với mọi m

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1

Xét 

  x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10

⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2   – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0

  m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0

⇔ m = 2 m = − 1

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án: D