bai 1 tim so a de da thuc x^3 - 3x^2+5x+a chia het cho da thuc x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng lược đồ hoocne ta có:
2 | -3 | 5 | a | |
x=-2 | 2 | -7 | 19 | 0 |
=> -2 . 19 + a = 0
=> -38 + a = 0 => a = 38
Ta thực hiện phép chia \(2x^3-3x^2+5x+a:x+2\) được số dư phép chia là a - 18
Để \(2x^3-3x^2+5x+a⋮x+2\) thì a - 18 = 0
=> a = 18
\(\left(x^3-2x^2\right)-\left(x^2-2x\right)+\left(7x-14\right)+a+14⋮x-2\)
nên a+14 chia hết cho x+2 nên:
a+14=0 hay a=-14
Định làm Bê du nhưng lười:vvvv
Gọi f(x)=x3-3x2+5x+a; g(x)=x-2.
Gọi thương của phép chia f(x) cho g(x) là h(x)
Vì f(x) là đa thức bậc 3 mà chia cho g(x) là đa thức bậc nhất nên h(x) phải là đa thức bậc hay
=> h(x) có dạng x2+bx+c
Ta có: f(x)=g(x).h(x)
<=> x3-3x2+5x+a=(x-2)(x2+bx+c)
<=> x3-3x2+5x+a=x3+bx2-2x2+cx-2bx-2c
<=>x3-3x2+5x+a=x3-x2(2-b)+x(c-2b)-2c
Đồng nhất hệ số, ta được:
\(\hept{\begin{cases}2-b=3\\c-2b=5\\-2c=a\end{cases}\Rightarrow\hept{\begin{cases}b=-1\\c=3\\a=-6\end{cases}}}\)
Vậy a=-6