K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

undefined

Bài 2: 

a: 3/8=81/216

5/27=40/216

b: -2/9=-50/225

4/25=36/225

c: 1/15=1/15

-6=-90/15

21 tháng 1 2022

cảm ơn :3

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=3\sqrt{5}-1\\4x+\left(2\sqrt{5}+2\right)y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=6\sqrt{5}-2\\4x+\left(2\sqrt{5}+2\right)y=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-8-2\sqrt{5}\right)y=6\sqrt{5}+2\\2x-3y=3\sqrt{5}-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-\sqrt{5}\\x=\dfrac{3\sqrt{2}-3\sqrt{5}+2}{2}\end{matrix}\right.\)

10 tháng 2 2022

\(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=6\sqrt{5}-2\\3.\left(\sqrt{5}-1\right)x+6y=3-3\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(3\sqrt{5}+1\right)x=1+3\sqrt{5}\\y=\dfrac{3\sqrt{5}-1-2x}{-3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\sqrt{5}-1-2.1}{-3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{-3.\left(1-\sqrt{5}\right)}{-3}=1-\sqrt{5}\end{matrix}\right.\\ \Rightarrow\left(x;y\right)=\left(1;1-\sqrt{5}\right)\)

24 tháng 9 2021

1) \(\sqrt{\dfrac{1}{200}}\)                            2) \(\dfrac{5}{1-\sqrt{6}}\)

\(=\sqrt{\dfrac{1^2}{10^2.2}}\)                          \(=\dfrac{1-\sqrt{6}+4+\sqrt{6}}{1-\sqrt{6}}\)

\(=\dfrac{1}{10\sqrt{2}}\)                              \(=1+\dfrac{4+\sqrt{6}}{1-\sqrt{6}}\)

24 tháng 9 2021

Bài 2: 

1. \(\sqrt{2x-5}=7\)    ĐKXĐ: \(x\ge\dfrac{5}{2}\)

<=> 2x - 5 = 72

<=> 2x - 5 = 49

<=> 2x = 54

<=> x = 27 (TM)

2. \(3+\sqrt{x-2}=4\)     ĐKXĐ: \(x\ge2\)

<=> \(\sqrt{x-2}=1\)

<=> x - 2 = 1

<=> x = 3 (TM)

3. \(\sqrt{x^2-2x+1}=1\)

<=> \(\sqrt{\left(x-1\right)^2}=1\)

<=> \(|x-1|=1\)

<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4. \(\sqrt{x^2-4x+4}=1\)

<=> \(\sqrt{\left(x-2\right)^2}=1\)

<=> \(|x-2|=1\)

<=> \(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5. \(\sqrt{4x^2+1-4x}=\sqrt{x^2+16+8x}\)

<=> \(\left(\sqrt{4x^2+1-4x}\right)^2=\left(\sqrt{x^2+16+8x}\right)^2\)

<=> \(|4x^2+1-4x|=|x^2+16+8x|\)

<=> \(\left[{}\begin{matrix}4x^2+1-4x=x^2+16+8x\\4x^2+1-4x=-\left(x^2+16+8x\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x^2-x^2-4x-8x+1-16=0\\4x^2+1-4x=-x^2-16-8x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2-12x-15=0\\5x^2+4x+17=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2+3x-15x-15=0\\VNghiệm\end{matrix}\right.\)

<=> 3x(x + 1) - 15(x + 1) = 0

<=> (3x - 15)(x + 1) = 0

<=> \(\left[{}\begin{matrix}3x-15=0\\x+1=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)