K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

để pt trên vô nghiệm thì x sẽ bằng -1 

\(\dfrac{x\left(x+n\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}=0\)

\(x^2+xn+x^2+x-2x-2-2x^2-2x=0\)

thay x = -1 để tìm n:

\(\left(-1\right)^2-n+\left(-1\right)^2-1-2.\left(-1\right)-2-2.\left(-1\right)^2-2.\left(-1\right)=0\)

\(1-n+1-1=0\)

\(1-n=0\)

=> n = 1 thì pt vô nghiệm.

Yên tâm cj thay n= 1 vô tìm x giải ra x = -1(ktm) pt vô nghiệm r.

20 tháng 12 2020

giúp mik với đi ạ mik thực sự đang cần gấp

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:
ĐKXĐ: $x\geq 5$

$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si

$\Leftrightarrow 2x^2-9x-2\leq 0$

$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$

Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$

Vậy pt vô nghiệm nên không có đáp án nào đúng.

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b) Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+4x-5}{2\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x-1=\dfrac{1}{2}\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để B=0 thì x=1 và Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

8 tháng 2 2021

thanks nha

 

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

3 tháng 5 2023

a, Th1 : \(m-1=0\Rightarrow m=1\)

\(\Rightarrow-x+3=0\\ \Rightarrow x=3\)

Th2 : \(m\ne1\)

\(\Delta=\left(-1\right)^2-4.\left(m-1\right).3\\ =1-12m+12\\=13-12m \)

phương trình có nghiệm \(\Delta\ge0\)

\(\Rightarrow13-12m\ge0\\ \Rightarrow m\le\dfrac{13}{12}\)

b, Áp dụng hệ thức vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{m-1}\\x_1x_1=\dfrac{3}{m-1}\end{matrix}\right.\)

Tổng bình phương hai nghiệm bằng 12 \(\Rightarrow x^2_1+x^2_2=12\)

\(\left(x_1+x_2\right)^2-2x_1x_2=12\\ \Leftrightarrow\left(\dfrac{1}{m-1}\right)^2-2.\left(\dfrac{3}{m-1}\right)=12\\ \Leftrightarrow\dfrac{1}{\left(m-1\right)^2}-\dfrac{6}{m-1}=12\\ \Leftrightarrow1-6\left(m-1\right)=12\left(m-1\right)^2\\ \Leftrightarrow1-6m+6=12\left(m^2-2m+1\right)\\ \Leftrightarrow7-6m-12m^2+24m-12=0\\ \Leftrightarrow-12m^2+18m-5=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9-\sqrt{21}}{12}\\m=\dfrac{9+\sqrt{21}}{12}\end{matrix}\right.\Rightarrow m=\dfrac{9+\sqrt{21}}{12}\)

10 tháng 10 2021

`2/(x+1)-m/(x-2)=0(x\ne-1,x\ne2)`

`<=>2/(x+1)=m/(x-2)`

`<=>2(x-2)=m(x+1)`

`<=>2x-4=mx+m`

`<=>mx-2x=-m-4`

`<=>x(m-2)=-4-m`

Để pt có nghiệm

`=>m-2ne0=>m ne 2`

`=>x=(-4-m)/(m-2)`

`x ne -1=>(-4-m)/(m-2)\ne-1`

`=>(-m-4)/(m-2)+1\ne0`

`<=>-2/(m-2) ne 0` luôn đúng với m khác 2

`x ne 2=>(-4-m)/(m-2)\ne2`

`=>(-m-4)/(m-2)-2 \ne 0`

`=>(-3m-8)/(m-2)\ne0`

`=>-3m-8\ne0`

`=>m\ne-8/3`

Vậy với `m ne 2` và `m ne -8/3` thì pt có nghiệm

10 tháng 10 2021

Đk: \(\left\{{}\begin{matrix}x+1\ne0\\x-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

Pt: \(\Rightarrow2\left(x-2\right)-m\left(x+1\right)=0\)

     \(\Rightarrow2x-4-mx-m=0\) \(\Rightarrow x\left(2-m\right)=m+4\)

     \(\Rightarrow x=\dfrac{m+4}{2-m}\)

Mà \(x\ne-1vàx\ne2\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{2-m}\ne-1\\\dfrac{m+4}{2-m}\ne2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4\ne-2\left(luônđúng\right)\\m\ne0\end{matrix}\right.\)

Vậy với \(m\ne0\) thì pt có nghiệm.

22 tháng 5 2023

a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.

b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.

c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.

22 tháng 5 2023

 bạn có thể giải rõ hơn đc ko ạ