K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A va ΔEBA vuông tại E có

góc B chung

=>ΔABC đồng dạng với ΔEBA

b: BC=căn 6^2+8^2=10cm

BF là phân giác

=>AF/AB=CF/BC

=>AF/3=CF/5=(AF+CF)/(3+5)=8/8=1

=>AF=3cm

BF=căn 6^2+3^2=3*căn 5(cm)

a: Xét ΔABC vuông tại A và ΔEBA vuông tại E có

góc B chung

=>ΔABC đồng dạng vơi ΔEBA

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

BF là phân giác

=>AF/AB=CF/BC

=>AF/3=CF/5=4/8=0,5

=>AF=1,5cm

\(BF=\sqrt{1,5^2+3^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

2 tháng 5 2022

a. Xét tam giác ABC và tam giác HBA có:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA (g.g)

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

 

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

hay \(AH^2=HB\cdot HC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: AH=4,8cm; HB=3,6cm

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

BF là phân giác

=>FA/AB=FC/BC

=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1

=>FA=3cm; FC=5cm

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: EA/EH=BA/BH

BC/BA=FC/FA

=>EA/EH=FC/FA