Bài 5: Cho tam giác ABC vuông tại A với AB = 6cm, AC = 8cm vẽ đường cao AE.
a) Chứng minh rằng DABC đồng dạng với DEBA.
b) Tia phân giác của góc ABC cắt AC tại F. Tính BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔEBA vuông tại E có
góc B chung
=>ΔABC đồng dạng vơi ΔEBA
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
BF là phân giác
=>AF/AB=CF/BC
=>AF/3=CF/5=4/8=0,5
=>AF=1,5cm
\(BF=\sqrt{1,5^2+3^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
a. Xét tam giác ABC và tam giác HBA có:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
hay \(AH^2=HB\cdot HC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: AH=4,8cm; HB=3,6cm
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a: BC=căn 6^2+8^2=10cm
BF là phân giác
=>FA/AB=FC/BC
=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1
=>FA=3cm; FC=5cm
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7
a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC
=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)
b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm
c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: EA/EH=BA/BH
BC/BA=FC/FA
=>EA/EH=FC/FA
a: Xét ΔABC vuông tại A va ΔEBA vuông tại E có
góc B chung
=>ΔABC đồng dạng với ΔEBA
b: BC=căn 6^2+8^2=10cm
BF là phân giác
=>AF/AB=CF/BC
=>AF/3=CF/5=(AF+CF)/(3+5)=8/8=1
=>AF=3cm
BF=căn 6^2+3^2=3*căn 5(cm)