Cho tam giác ABC có H là trung điểm BC, kẻ HE vuông góc AC tại E. Gọi O là trung điểm HE. Chứng minh rằng: AO vuông góc với BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a, có O là TĐ của HE
I là trung điểm EC
OE/EH= EI/EC=1/2
⇒OI song² HC
MÀ HC vuông góc AH
⇒ OI vuông góc AH
b, xét ΔAHI
có DI vuông góc AH ⇒ OI là đường cao
HE vuông góc AI ⇒ HE là đường cao
⇒ O là trực tâm Δ AHI
⇒ AO là đường cao Δ AHI
⇒ AO vuông góc HI (1)
Xét Δ ABC cân tại A
có AH là đường cao
⇒ AH là trung tuyến
H là TĐ của BC
⇒ HC/BC = 1/2
có I là TĐ EC ⇒ IC/EC = 1/2
⇒ HC / BC = IC/EC ⇒HI song² BE (2)
Từ (1), (2) ⇒ AO vuông góc với BE
T.I.C.K CHO MÌNH VỚI NHÉ. MÌNH ĐẦU
a: góc A=90 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBDC có
DH,CA là đường cao
DH cắt CA tại E
=>E là trực tâm
=>BE vuông góc DC
d: cosB=AB/BC=1/2
=>góc B=60 độ
a: goc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
-Sửa đề: △ABC cân tại A mà AH là trung tuyến \(\Rightarrow\)AH là đg cao
\(\Rightarrow\)AH⊥BC tại H.
-Gọi D là trung điểm CE.
-△CEH có: OD là đg trung bình \(\Rightarrow\)OD//CH \(\Rightarrow\)OD⊥AH.
-△BCE có: HD là đg trung bình \(\Rightarrow\)HD//BE.
-△AHD có: 2 đg cao HE và DO cắt nhau tại O.
\(\Rightarrow\)O là trực tâm △AHD.
\(\Rightarrow\)AO⊥HD nên AO⊥BE.