Bài cho 2 đường thẳng AB và CD cắt nhau tại O tạo thành 4 góc( khác 180°).Tính số đo 4 góc biết AOD - BOD =30°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
aOd + bOd = 180 độ
aOd - bOd = 30 độ
=> aOd= (180 độ +30 độ) : 2 = 105 độ
=> bOd = 180 độ -105 độ = 75 độ
VẬY aOd = 105 độ
bOd = 75 độ
Theo đề ra ta có : AOD -BOD=30°
và AOD+ BOD=180°( hai góc kề bù)
=>30+BOD+BOD=180°
=>2BOD= 150°
=>BOD=75°
hay AOD=180°-BOD=180°-75°=105°
Ta lại có:AOC=BOD=75°(hai góc đối đỉnh)
và AOD=BOC=105°(Hai góc đối đỉnh)
AÔC và BÔD là 2 góc đối đỉnh nên chúng bằng nhau, do đó có:
\(AÔC=BÔD=\frac{130^o}{2}=65^o\)
Có: AÔC + CÔB = 180 o ( 2 góc kề bù)
65o + CÔB = 180o
CÔB=180o-65o=115o
CÔB đối đỉnh với AÔD nên AÔD=CÔB=115o
Bài 1 : Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)
\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)
\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)
Bài 2 : Bài giải
Ta có:
\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )
\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )
Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)
Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)
\(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)
\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)
ta có : \(\widehat{AOD}+\widehat{BOC}=130^0\)
\(\widehat{AOD}=\widehat{BOC}\) ( đối đỉnh )
\(\Rightarrow\widehat{AOD}=\widehat{BOC}=65^0\)
do 3 điểm A;O;B thẳng hàng
\(\Rightarrow\widehat{AOB}=180^0\)
Trên nửa mặt phẳng chứa bờ AB
ta có : \(\widehat{AOD}< \widehat{AOB}\) ( 650 < 1800 )
=> Tia OD nằm giữa 2 tia OA Và OB
\(\widehat{AOB}=\widehat{AOD}-\widehat{BOD}\)
\(180^0=65^0-\widehat{BOD}\)
\(\widehat{BOD}=115^0\)
\(\Rightarrow\widehat{DOB}=\widehat{AOC}=115^0\) ( đối đỉnh )
Ta có 2 góc AOC và BOD đối đỉnh nên AÔC = BÔD = 130 độ/2 = 65 độ
Ta có AÔC + AÔD = 180 độ (kề bù)
=> AÔD = 180 độ - AÔC = 180 độ - 65 độ = 115 độ
Ta có 2 góc AOD và BOC đối đỉnh nên AÔD = BÔC = 115 độ
Ta có: 2 góc AOC và BOC đối đỉnh nên AOC = BOD =130o : 2 = 65o
AOC + AOD = 180o ( kề bù )
\(\Rightarrow\)AOD = 180o - AOC = 180o - 65o = 115o
\(\Leftrightarrow\)Vậy a góc AOD và BOC đối đỉnh nên AOC = BOC = 115o