Cho HPT: \(\left\{{}\begin{matrix}ax+y=3\\2x+y=a^2+3\end{matrix}\right.\). Tìm a để HPT có nghiệm (x;y)=(1;2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Do \(x=2\) là nghiệm của phương trình nên:
\(\left\{{}\begin{matrix}2a+y=3\\2+ay=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=3-2a\\ay=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ay=3a-2a^2\\ay=-3\end{matrix}\right.\)
\(\Rightarrow3a-2a^2=-3\)
\(\Rightarrow2a^2-3a-3=0\Rightarrow a=\dfrac{3\pm\sqrt{33}}{4}\)
Thay vào ta được
\(\left\{{}\begin{matrix}a=2a-1\\-1=a^2-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a^2-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)
Nguyễn Huy Tú ( ✎﹏IDΣΛ... CTV, bn ơi cho mình hỏi tí:
Nếu mình làm như này có đúng không bạn:
\(\left\{{}\begin{matrix}a-1=0\\a^2-1=0\end{matrix}\right.\Leftrightarrow a-1=a^2-1\) rồi giải ra tìm được a=0 hoặc a=1 có đúng không bạn??
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} ax-2y=a\\ y=a+1+2x\end{matrix}\right.\Rightarrow ax-2(a+1+2x)=a\)
\(\Leftrightarrow x(a-4)=3a+2(*)\)
Để hệ pt đã cho có nghiệm $(x,y)$ duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất
Điều này xảy ra khi $a-4\neq 0\Leftrightarrow a\neq 4$
Với a = 0 ta có \(\left\{{}\begin{matrix}-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)( không thỏa mãn đề bài )
Với a ≠ 0 ta có : \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2\left(4-y\right)-2y=0\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-a^2y-2y=0\\x=4-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+2\right)y=-4a^2\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-4a^2}{a^2+2}\\x=4+\dfrac{4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)là nghiệm duy nhất của hệ phương trình
Để hệ phương trình có nghiệm x = -4 , y = 4a thì :
\(\left\{{}\begin{matrix}\dfrac{8a^2+8}{a^2+2}=-4\\4a=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a^2+8=-4a^2-8\\4a^3+8a=-4a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2+4=0\\a^3+a^2+2a=0\end{matrix}\right.\)( đến đây bạn tự giải nốt rồi kết luận nhé :v )
Thay x=1 và y=2 vào HPT, ta được:
\(\left\{{}\begin{matrix}a+2=3\\2+2=a^2+3\end{matrix}\right.\Leftrightarrow a=1\)