Cho HPT: \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\)( a là tham số). Tìm a để HPT có nghiệm (x=-4; y=4a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)
Để \(x^2+y^2=10\)
\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)
\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)
\(\Leftrightarrow26m^2+60m-54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
Thay x=1 và y=2 vào HPT, ta được:
\(\left\{{}\begin{matrix}a+2=3\\2+2=a^2+3\end{matrix}\right.\Leftrightarrow a=1\)
Với a = 0 ta có \(\left\{{}\begin{matrix}-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)( không thỏa mãn đề bài )
Với a ≠ 0 ta có : \(\left\{{}\begin{matrix}a^2x-2y=0\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2\left(4-y\right)-2y=0\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-a^2y-2y=0\\x=4-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+2\right)y=-4a^2\\x=4-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-4a^2}{a^2+2}\\x=4+\dfrac{4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\dfrac{8a^2+8}{a^2+2}\\y=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\)là nghiệm duy nhất của hệ phương trình
Để hệ phương trình có nghiệm x = -4 , y = 4a thì :
\(\left\{{}\begin{matrix}\dfrac{8a^2+8}{a^2+2}=-4\\4a=\dfrac{-4a^2}{a^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a^2+8=-4a^2-8\\4a^3+8a=-4a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2+4=0\\a^3+a^2+2a=0\end{matrix}\right.\)( đến đây bạn tự giải nốt rồi kết luận nhé :v )