K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)

\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)

\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)

\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)

22 tháng 12 2016

a)

(ax+by)2 - (ay+bx)2

=(ax+by-ay-bx)(ax+by+ay+bx)

=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]

=(a-b)(x-y)(a+b)(x+y)

b)(a2+b2-5)2 - 4(ab+2)2

=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)

=[ (a-b)2 -9][ (a+b)2 -1]

=(a-b-3)(a-b+3)(a+b-1)(a+b+1)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

15 tháng 7 2018

a) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(b+c+a\right)\left(b+c-a\right)\left(a+b-c\right)\left(a-b+c\right)\)

b) \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)

\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)

c) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b+3\right)\left(a-b-3\right)\)

d) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18+4x^2+3x\right)\left(4x^2-3x-18-4x^2-3x\right)\)

\(=\left(8x^2-18\right)\left(-6x-18\right)\)

\(=\left[2\left(4x^2-9\right)\right]\left[-6\left(x+3\right)\right]\)

\(=12\left(2x+3\right)\left(2x-3\right)\left(x+3\right)\)

20 tháng 11 2021

B

14 tháng 10 2021

a: \(x^2-2xy+y^2+3x-3y-4\)

\(=\left(x-y\right)^2+3\left(x-y\right)-4\)

\(=\left(x-y+4\right)\left(x-y-1\right)\)

 

 

a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)

=(x+2)(x4-x3+x2-x+1)