K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

sao ra x=y đc nhỉ 
pt đã cho có dạng  \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y

\(x^2+xy+y^2=x^2y^2.\)

+ x =0; y =0  là nghiệm

+ x y khác  0

\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)

=> x =y 

=> 3x2 =x4 => x2 = 3 loại

Vậy x = y =0 là nghiệm duy nhất

3 tháng 9 2016

Ta có x2 + xy + y2 = xy2

<=> (x + y)= xy(xy + 1) 

Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2

Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0

Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1) 

17 tháng 4 2017

mk mới lớp 7

30 tháng 7 2018

viết lại pt dưới dạng 

\(x^2-2x\left(y+2\right)+\left(2y^2+8\right)=0.\)

\(\Delta`x=\left(y+2\right)^2-\left(2y^2+8\right)=0\)

\(\Delta`=y^2+4y+4-2y^2-8=-y^2+4y-4=0\)

\(\Delta`=-\left(y-2\right)^2=0\Leftrightarrow y=2\)

thay y=2 

\(x^2-4x+8-4x=-8\)

\(x^2-8x+16=0\)

\(\left(x-4\right)^2=0\Leftrightarrow x=4\)

30 tháng 7 2018

        \(x^2-2xy+2y^2-4x=-8\)

\(\Leftrightarrow x^2-2xy+2y^2-4x+8=0\)

\(\Leftrightarrow2x^2-4xy+4y^2-8x+16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-4\right)^2=0\)

Ta có: \(\left(x-2y\right)^2+\left(x-4\right)^2\ge0\) \(\forall x;y\)

Dấu "=" xảy ra: \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\x=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2\\x=4\end{cases}}}\) (thỏa mãn)

Vậy x = 4 và y = 2

Bài bạn gửi hay đấy .Chúc bạn học tốt.

4 tháng 9 2016

Ta có x- y= 6y + 44

<=> x- (y + 3)2 = 35

<=> (x - y - 3)(x + y + 3) = 5×7

<=> \(\hept{\begin{cases}x-y-3=7\\3+x+y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=5\\3+x+y=7\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=1\\3+x+y=15\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=15\\3+x+y=1\end{cases}}\)

Vậy (x; y) = (8; 4)

6 tháng 7 2016

Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)

x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)

Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x

Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) <  x/(yz+1)+y/(zx+1)+z/(xy+1) 
                                                              x/(yz+1) + y/(zx+y) +z/(xy+z)
                                                              = x(1/(yz+1) -x/(xz+y) -y/(xy+z))
                                                              < x(1- z/(z+y) -y/(y+z))+5
                                                              = 5

Vậy GTLN là 5

31 tháng 1 2017

bạn viết dễ hiểu hơn dc ko

24 tháng 9 2017

Ta có : \(x^2+y^2+xy=x^2y^2\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Mà \(x^2y^2\le xy\left(xy+1\right)\le\left(xy+1\right)^2\)

Không tồn tại 1 số chính phương giữa 2 số chính phương để xy(xy+1) là 1 số chính phương thì nó phải bằng 1 trong hai số đó .

\(\Rightarrow xy\left(xy+1\right)=0\) 

\(\Rightarrow\left(x,y\right)=\left(0,0\right);\left(1,-1\right);\left(-1,1\right)\)

24 tháng 9 2017

\(x^2+y^2+xy=x^2y^2\)

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 

Thân_mưa ^^