Tìm 20 chữ số thập phân đầu tiên của \(\sqrt{0,99...99}\)(có 20 chữ số 9)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đợi mãi k có ai trả lời:
Đặt M=0,99..99(có 20 chữ số 9).Vì M<1 nên M<căn M (1)
Lại có (căn a)+(căn (a-x))< 2 (căn a) (với a>x>0) =>(căn a) - (căn (a-x))=x/((căn a)+(căn (a-x))) > x/(2 căn a)
Áp dụng với a=1 và x= 10^-20 suy ra 1-căn M >0,5.10^-20 => căn M < 1- 0,5.10^-20 =0.99.995(có 20 chữ số 9).Kết hợp với (1) suy ra M<căn M < 0,99..995 (có 20 chữ số 9),suy ra 20 chữ số thập phân đầu tiên sau dấu phẩy của căn M là 20 chữ số 9.
Đặt M=0,99..99(có 20 chữ số 9).Vì M<1 nên M<căn M (1)
Lại có (căn a)+(căn (a-x))< 2 (căn a) (với a>x>0) =>(căn a) - (căn (a-x))=x/((căn a)+(căn (a-x))) > x/(2 căn a)
Áp dụng với a=1 và x= 10^-20 suy ra 1-căn M >0,5.10^-20 => căn M < 1- 0,5.10^-20 =0.99.995(có 20 chữ số 9).Kết hợp với (1) suy ra M<căn M < 0,99..995 (có 20 chữ số 9),suy ra 20 chữ số thập phân đầu tiên sau dấu phẩy của căn M là 20 chữ số 9.
ta chứng minh 0,99...9 < \(\sqrt{0,999...9}\)< 0,999...9 (hai số đầu có 2005 số 9, số cuối có 2006 số 9). (1)
Khi đó 2005 chữ số thập phân đầu tiên của \(\sqrt{0,999...9}\) là 2005 chữ số 9.
thật vậy, dễ dàng chứng minh BĐT đầu bằng cách bình phương hai vế.
ta chứng minh BĐT thứ 2.
với số dạng 0,999....9 (n chữ số 9) ta có 0,999...9 = \(\frac{1}{10^n}\left(10^n-1\right)\)
do đó BĐT thứ 2 sẽ là \(\frac{1}{10^{2005}}\left(10^{2005}-1\right)< \left(\frac{1}{10^{2006}}\left(10^{2006}-1\right)\right)^2\)
phá ngoặc nhân chéo ta được 102007(102005 - 1) < (102006 - 1)2
hay 104012 - 102007 < 104012 - 2. 102006 + 1
hay 8. 102006 + 1 > 0. vậy BĐT thứ 2 đúng hay (1) đúng.
Cj search mạng trước khi đăng nhs!
Câu hỏi của Momozono Nanami - Toán lớp 9 - Học toán với OnlineMath
Chúc cj học tốt!
ta có :
\(A=\frac{1}{9}+\frac{2}{99}=\frac{11}{99}+\frac{2}{99}=\frac{13}{99}=0.\left(13\right)\)
vậy trong 2021 chữ số sau dấu , có 1011 số 1 và 1010 số 3
tổng của chúng là : \(1011\times1+1010\times3=4041\)
Đặt A = 0,999...99 (20 chữ số 9)
Vì\(0< A< 1\Rightarrow A^2< A< 1\) (1)
Khai căn bậc hai cả 3 vế của (1) \(\Rightarrow A< \sqrt{A}< 1\)(2)
Từ (2) suy ra 20 chữ số thập phân của \(\sqrt{A}\)cũng là 20 chữ số 9.
tự hỏi tự trả lời kiếm l-i-k-e ak??
75675675685685656963453453452352345634546546546544756453