Cho tam giác ABC vuông tại A có góc B=60 độ. Trên cạnh BC lấy điểm D sao cho BA = BD. Tia phân giác của góc B cắt AC tại I
a. Cm: tam giác BAD đều
b. Cm: tam giác IBC cân
c. Cm: D là trung điểm của BC
d. Cho AB=6cm. Tính BC,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: A + ABC + C =180° (đ/l)
=> 90° + ABC + 40° =180°
=> ABC = 180° -( 40°+ 90°)
=> ABC = 50°
Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°
Vậy ABD = 25°
b) xét tam giác BAD và tam giác BED có:
AB = BE ( GT )
BD chung
ABD = CBD ( GT )
=> tam giác BAD = tam giác BED ( c.g.c )
Ta có A = BED = 90° ( 2 góc t.ư)
=> DE vuông góc BC ( vì có 1 góc= 90° )
c) xét tam giác ABC và tam giác EBF có:
AB = BE ( GT )
B chung
A = E = 90°
=> tam giác ABC = tam giác EBF ( g.c.g )
d) ta có tam giác ABC = tam giác EBF ( theo c )
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( GT )
BK chung
FBK = KBC ( GT )
=> tam giác BKC = tam giác BKF (c.g.c)
=> BKC = BKF ( 2 góc t.ư)
=> BKC + BKF = 180° ( 2 góc kề bù )
=> BKC = BKF = 180° : 2 = 90° = KFC
Vậy 3 điểm K,F,C thẳng hàng
Bn vẽ hình hộ mk nhé!
a) Áp dụng tc tổng 3 góc của 1 tg ta có:
góc BAC + ACB + ABC = 180 độ
=>90 + 40 + ABC = 180
=> ABC = 50 độ
mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )
a: góc C=180-80-60=40 độ
góc A>góc B>góc C
=>BC>AC>AB
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDMC và ΔDAH có
góc DMC=góc DAH
DM=DA
góc MDC=góc ADH
=>ΔDMC=ΔDAH
=>DC=DH
a, BA = BD (gt)
=> tam giác ABD cân tại B (đn)
góc ABC = 60 (gt)
=> tam giác ABD đều (dấu hiệu)
b) ta có \(\widehat{A}\)=90 độ và \(\widehat{B}\)=60 độ => \(\widehat{C}\)=30 độ (1)
Mà BI là p/g của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => t.giác IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
xét t.giác BIA và t.giác CID có:
DI=AI(t.giác BIA=t.giác BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vì t.giác IBC cân)
=> t.giác BIA=t.giác CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
c) vì AB=1/2 BC nên BC=12 cm
áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> \(AC^2\)=\(BC^2-AB^2\)
=> \(AC^2\)=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm