Câu 4: (2,5 điểm)
Cho tam giác MEF vuông tại M có ME=3cm, MF=4cm. Vẽ đường trung tuyến MI. Gọi G là trọng tâm tam giác MEF.
a)So sánh góc E và góc F.
b)Tính độ dài cạnh huyền EF.
Tính độ dài MG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có DE < DF( 5cm < 12cm)
->góc F< góc E
b) áp dụng đl pytago:
EF^2=DE^2+DF^2=5^2+12^2=169
= > EF=13 (cm)
tam giác DEF có DM là trung tuyến(M là trung điểm của EF) ứng với cạnh huyền
=> DM=EM=MF=EF/2=13/2=6,5cm
a. áp dụng dl Pytago ta có
BC^2= AB^2+AC^2
BC^2= 8^2+15^2=64+225=289(cm)
=> BC= căn 289=17cm
b. vì trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền nên
AM= 1/2BC= BC/2=8.5cm
AG= 2/3 AM = 2/3 . 8.5 xấp xỉ 5.7
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AM=EF
hay EF=5cm
a) Do \(MF>ME\) nên \(\widehat{E}>\widehat{F}\) (Quan hệ giữa góc và cạnh đối diện trong tam giác)
b) Áp dụng định lý Pytago ta có:
\(EF^2=ME^2+MF^2=3^2+4^2=25\Rightarrow EF=5\left(cm\right)\)
Do \(MI\) là trung tuyến ứng với cạnh huyền nên \(MI=\dfrac{1}{2}EF=2,5\left(cm\right)\)
Do \(G\) là trọng tâm tam giác nên \(MG=\dfrac{2}{3}MI=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)