K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Phương pháp:

Sử dụng quan hệ vuông góc để chứng minh các đáp án và chọn đáp án đúng.

Cách giải:

ABC là tam giác cân tại A, M là trung điểm của BC

Chọn: C

10 tháng 5 2017

Chọn C.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Gọi H là trung điểm của BC. Suy ra:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Ta có:

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Do H là hình chiếu của S lên mp(ABC) nên góc giữa đường thẳng SA và mp (ABC) là góc Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét tam giác vuông SHA có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

27 tháng 3 2017

S A B C H K

Do \(\Delta ABC\) là tam giác vuông cân và \(BA=BC\) nên \(\Delta ABC\) vuông cân tại \(B \)\(AC=a\sqrt{2}\).

Trong mp (\(SAB \)) dựng \(AK\perp SB\) với \(K\in SB\)

Trong mp \((SAC)\) dựng \(AH\perp SC\) với \(H\in SC\)

Do \(SA\perp BC\)\(AB\perp BC\) nên \(BC\perp\left(SAB\right)\)

\(\Rightarrow\) \(\left(SAB\right)\perp\left(SBC\right)\) \(\Rightarrow AK\perp\left(SBC\right)\)

\(\Rightarrow AK\perp SC\)\(AH\perp SC\) nên \(SC\perp\left(AHK\right)\)

\(\Rightarrow HK\perp SC\)\(\Delta AHK\) vuông tại \(K\) nên góc giữa 2 mp cần tính là \(\widehat{AHK}\)

Áp dụng hệ thức lượng trong tam giác vuông ta tính được \(AH=\dfrac{a\sqrt{2}}{\sqrt{3}}\)\(AK=\dfrac{a}{\sqrt{2}}\)

\(\Rightarrow\sin\widehat{AHK}=\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\cos\widehat{AHK}=\dfrac{1}{2}\)

16 tháng 8 2018

Đáp án A

19 tháng 3 2017

Chọn A

31 tháng 12 2017

Chọn A.

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: BC vuông góc (SAM)

=>BC vuông góc SM

=>(SM;(ABC))=90 độ