Mọi người ơi, giúp mình nhanh bài này với ạ, mình đang cần gấp ạ. Cảm ơn mng nhiều!!
\(\left(\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\right):\left(1-\dfrac{2}{\sqrt{a}+2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
ĐK : a >= 0 , a khác 1
\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)
\(u_1=\dfrac{1}{\sqrt{2}};q=\dfrac{1}{\sqrt{2}}\)
\(S_{99}=\dfrac{\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1}{\sqrt{2}}^{99}-1\right)}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\right):\dfrac{1-\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{1}{1-\sqrt{2}}\cdot\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\)
var n,i:integer;
s:real;
begin
write('n=');readln(n);
s:=0;
for i:=1 to n do s:=s+(1/(i*(i+1)));
writeln(' Tong la: ',s);
readln;
end.
2) var n,i:integer;
s:real;
begin
write('n=');readln(n);
s:=0;
for i:=1 to n do s:=s+(1/((2*i)-1));
writeln(' Tong la: ',);
readln;
end.
a: \(A=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)
\(=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{a-1}\)
\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)
b: \(=1+\left(\dfrac{\left(2\sqrt{a}-1\right)}{1-\sqrt{a}}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
Δ\(=1+\left(\dfrac{\left(-2\sqrt{a}+1\right)}{\sqrt{a}-1}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\dfrac{-2a\sqrt{a}-\sqrt{a}+1+2a\sqrt{a}-\sqrt{a}+a}{a+\sqrt{a}+1}\cdot\dfrac{\sqrt{a}}{2\sqrt{a}-1}\right)\)
\(=1+\dfrac{\left(\sqrt{a}-1\right)^2\cdot\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)
\(=\dfrac{2a\sqrt{a}+2a+2\sqrt{a}-a-\sqrt{a}-1+a\sqrt{a}-2a+\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)
\(=\dfrac{3a\sqrt{a}-a+2\sqrt{a}-1}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)
a: Ta có: \(P=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{a+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)