Cho ΔABC có 3 góc nhọn, đường cao AH (H ∈ BC). Vẽ HD vuông góc với AB tại D, HE vuông góc với AC tại E.
a) Chứng minh: ΔAHB ∼ ΔADH, ΔAHC ∼ ΔAEH.
b) Chứng minh: AD.AB = AC.AE.
c) Cho AB = 12cm, AC = 15cm, BC = 18cm. Tính độ dài đường phân giác AK của ΔABC (K ∈ BC).
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
Do đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)