K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBCD và ΔYZT có

góc DBC=góc TYZ

góc BCD=góc YZT

=>ΔBCD đồng dạng với ΔYZT

b: ΔBCD đồng dạng với ΔYZT

=>góc BDC=góc YTZ

=>góc BAC=góc YXZ

19 tháng 1 2018

a) Tứ giác AHIK có:

A H I ^ = 90 0   ( I H ⊥ A B ) A K I ^ = 90 0   ( I K ⊥ A D ) ⇒ A H I ^ + A K I ^ = 180 0

=> Tứ giác AHIK nội tiếp.

b) IAD và  ∆ IBC có:

A ^ 1 = B ^ 1  (2 góc nội tiếp cùng chắn cung DC của (O))

A I D ^ = B I C ^  (2 góc đối đỉnh)

=> ∆ IAD ~  IBC (g.g)

⇒ I A I B = I D I C ⇒ I A . I C = I B . I D

c, Xét đường tròn ngoại tiếp tứ giác AHIK có K ^ 1 = D ^ 1

A ^ 1 = H ^ 1  (2 góc nội tiếp cùng chắn cung IK)

mà  A ^ 1 = B ^ 1 ⇒ H ^ 1 = B ^ 1

Chứng minh tương tự, ta được K ^ 1 = D ^ 1

∆ HIK và  ∆ BCD có:  H ^ 1 = B ^ 1  ;  K ^ 1 = D ^ 1

=>   ∆ HIK  ~  BCD (g.g)

d) Gọi S1 là diện tích của  ∆ BCD.

Vì  ∆ HIK  ~  BCD nên:

S ' S 1 = H K 2 B D 2 = H K 2 ( I B + I D ) 2 ≤ H K 2 4 I B . I D = H K 2 4 I A . I C                                 (1)

Vẽ  A E ⊥ B D  ,  C F ⊥ B D ⇒ A E / / C F ⇒ C F A E = I C I A  

∆ ABD và  ∆ BCD có chung cạnh đáy BD nên:

S 1 S = C F A E ⇒ S 1 S = I C I A                                                                     (2)

Từ (1) và (2) suy ra

S ' S 1 ⋅ S 1 S ≤ H K 2 4 I A . I C ⋅ I C I A ⇔ S ' S ≤ H K 2 4 I A 2  (đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc EDB=góc ECB

3 tháng 3 2016

a) Dễ thấy : \(\Delta ABC\) đồng dạng với \(\Delta DEC\) (g.g) (Góc A = Góc CDE; góc C chung)

b) Từ a => \(\frac{AB}{DE}=\frac{AC}{DC}=\frac{BC}{EC}\)

c) Từ b => DC.BC = EC.AC