cau 10 giải chi tiết giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=\sqrt{7}+\sqrt{7}=2\sqrt{7}\)
Ta có: \(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
Ta có :
- 9999=101.99\(\Rightarrow\)999910=(101.99)10=10110.9910
- 9920=9910+10=9910.9910
Vì 10110>9910\(\Leftrightarrow\)10110.9910>9910.9910\(\Leftrightarrow\)999910>9920
Vậy 999910>9920
( 2003 x 58 + 52 x 2003 - 10 x 2003 ) + ( 670 - 335 ) x 100
= 2003 x ( 58 + 52 -10 ) + 315 x 100
= 2003 x 100 + 315 x 100
= 200300 + 31500
= 231800
( 2003 x 58 + 52 x 2003 - 10 x 2003 ) + ( 670 - 355 ) x 100
= 200300 + 315 x100
= 200300 + 31500
= 231800
( 2003 x 58 + 52 x 2003 - 10 x 2003 ) + ( 670 - 355 ) x 100
= 200300 + 315 x100
= 200300 + 31500
= 231800
Ta có
\(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)
Nên
\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)
\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)
\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)
\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)
\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)
\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)
\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Kẻ OM vuông óc với CD
Vì CD là 1 dây của (O)
=> M là trung điểm của CD
=> MC = MD
Có: AH // BK (cùng vuông góc với CD)
=> AHKB là Hình thang
Lại có: OM vuông góc với CD; O là trung điểm của AB
=> M là trung điểm của HK
=> MH = MK
Có: \(\left\{{}\begin{matrix}HD+MD=HM\\MC+CK=MK\end{matrix}\right.\)
Mà: MH = MK (cmt) và MD = MC (cmt)
=> HD = CK
10
\(n_{Zn}=\dfrac{3,25}{65}=0,05\left(mol\right)\)
\(n_{CuO}=\dfrac{6}{80}=0,075\left(mol\right)\)
\(pthh:Zn+HCl->ZnCl_2+H_2\)
0,05 0,05
\(pthh:CuO+H_2\underrightarrow{t^o}H_2O+Cu\)
LTL : \(\dfrac{0,075}{1}>\dfrac{0,05}{1}\)
=>> CuO dư
theo pthh : \(n_{Cu}=n_{H_2}=0,05\)(mol)
=> \(m_{Cu}=0,05.64=3,2\left(g\right)\)
=> \(m_{CuO\left(d\right)}=\left(0,075-0,05\right).80=2\left(g\right)\)
Câu 10:
\(a) n_{Zn} = \dfrac{3,25}{65} = 0,05 (mol)\\n_{CuO} = \dfrac{6}{80} = 0,075 (mol)\)
PTHH:
Zn + 2HCl ---> ZnCl2 + H2
0,05------------------------->0,05
CuO + H2 --to--> Cu + H2O
LTL: \(0,075>0,05\rightarrow\) CuO dư
b, Theo pthh: \(n_{CuO\left(pư\right)}=n_{Cu}=n_{H_2}=0,05\left(mol\right)\)
\(\rightarrow m_{Cu}=0,05.64=3,2\left(g\right)\)
\(c) \text{chất dư là CuO}\\ \rightarrow m_{CuO (dư)} = (0,075 - 0,05) . 80 = 2 (g)\)