K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2022

\(\Rightarrow\left(n+3\right)\left(n^3+2n^2+1\right)\) cũng là SCP

\(\Rightarrow4\left(n^4+5n^3+6n^2+n+3\right)\) là SCP

\(\Rightarrow4n^4+20n^3+24n^2+4n+12=k^2\)

Ta có:

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n-1\right)^2+3n^2+14n+11>\left(2n^2+5n-1\right)^2\)

\(4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2-\left(n-1\right)\left(5n+11\right)\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left(2n^2+5n-1\right)^2< k^2\le\left(2n^2+5n+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n\right)^2\\4n^4+20n^3+24n^2+4n+12=\left(2n^2+5n+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n^2-4n-12=0\\\left(n-1\right)\left(5n+11\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=1\\n=6\end{matrix}\right.\)

Thay lại kiểm tra thấy đều thỏa mãn

17 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

 

NV
15 tháng 4 2022

\(\Leftrightarrow x^2y^2+22xy+141=4\left(x^2+6xy+9y^2\right)+7\left(x+3y\right)\)

\(\Leftrightarrow\left(xy+11\right)^2+20=4\left(x+3y\right)^2+7\left(x+3y\right)\)

\(\Leftrightarrow16\left(xy+11\right)^2+320=64\left(x+3y\right)^2+112\left(x+3y\right)\)

\(\Leftrightarrow\left(4xy+44\right)^2+369=\left(8x+24y+7\right)^2\)

\(\Leftrightarrow\left(8x+24y-4xy-37\right)\left(8x+24y+4xy+51\right)=369\)

Pt ước số

15 tháng 4 2022

Dạ em cám ơn thầy, em hiểu rồi ạ

 

NV
15 tháng 4 2022

\(\Leftrightarrow\left(2x-3y\right)^2+xy=\left(xy\right)^2\)

\(\Leftrightarrow\left(2x-3y\right)^2=xy\left(xy-1\right)\)

Do \(xy\left(xy-1\right)\) là 2 số nguyên liên tiếp nên tích của chúng là SCP khi và chỉ khi: \(\left[{}\begin{matrix}xy=0\\xy=1\end{matrix}\right.\) 

TH1: \(xy=0\Rightarrow4x^2+9y^2=0\Rightarrow x=y=0\)

TH2: \(xy=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\) thế vào pt đầu đều ko thỏa mãn

15 tháng 4 2022

Em cám ơn thầy Lâm nhiều lắm ạ!

NV
6 tháng 4 2022

Do \(2x^2-1\) luôn lẻ \(\Rightarrow y^3\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k-1\) với \(k>1\)

\(2x^2-1=\left(2k-1\right)^3=8k^3-12k^2+6k-1\)

\(\Rightarrow x^2=4k^3-6k^2+3k=k\left(4k^2-6k+3\right)\)

- Nếu \(k⋮3\Rightarrow x^2⋮3\Rightarrow x⋮3\)

- Nếu \(k⋮̸3\), gọi \(d=ƯC\left(4k^2-6k+3;k\right)\) với \(d\ne3\)

\(\Rightarrow4k^2-6k+3-k\left(4k-6\right)⋮d\) 

\(\Rightarrow3⋮d\Rightarrow d=1\)

\(\Rightarrow4k^2-6k+3\) và \(k\) nguyên tố cùng nhau

Mà \(k\left(4k^2-6k+3\right)=x^2\Rightarrow\left\{{}\begin{matrix}k^2=m^2\\4k^2-6k+3=n^2\end{matrix}\right.\) 

Xét \(4k^2-6k+3=n^2\Rightarrow16k^2-24k+12=\left(2n\right)^2\)

\(\Rightarrow\left(4k-3\right)^2+3=\left(2n\right)^2\)

\(\Rightarrow\left(2n-4k+3\right)\left(2n+4k-3\right)=3\)

Giải pt ước số cơ bản này ta được nghiệm nguyên dương duy nhất \(k=1\) (không thỏa mãn \(k>1\))

Vậy \(x⋮3\)

6 tháng 4 2022

Em cám ơn thầy Lâm ạ!