Cho các số a, b, c > 0 và a + b + c = 21. Tìm GTLN của:
a, \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le9\)
b, \(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).
Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\); \(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).
Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).
Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).
Dấu "=" xảy ra khi a = b = c = 1.
Ta có:
\(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2=3\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+3}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{\sqrt{b^2+3}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+3}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{c}{a+c}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(a=b=c=1\)
\(P=\dfrac{1}{2}\left(\dfrac{2\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{2\sqrt{ac}}{b+2\sqrt{ac}}+\dfrac{2\sqrt{ab}}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{1}{2}\left(1-\dfrac{a}{a+2\sqrt{bc}}+1-\dfrac{b}{b+2\sqrt{ca}}+1-\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a}{a+2\sqrt{bc}}+\dfrac{b}{b+2\sqrt{ca}}+\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P\le\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+2\sqrt{bc}+b+2\sqrt{ca}+c+2\sqrt{ab}}=\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}=1\)
\(P_{max}=1\) khi \(a=b=c\)
\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)
Theo bđt Bunhiacopski ta có
\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))
Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)
\(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)
\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)
Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)
\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)
\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó
Tìm Max
Theo bđt Bunhiacopski ta có
\(P^2\le\left(1+1+1\right)\left(a+b+c+a^2+b^2+c^2\right)\)
\(=3\left(a+b+c+a^2+b^2+c^2\right)\)\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\right)\)
\(=3\left(1+\sqrt{3}\right)\)
\(\Rightarrow P\le\sqrt{3\left(1+\sqrt{3}\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Với mọi số thực dương x;y;z ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
Áp dụng:
a.
\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\sqrt{3\left(a+2+b+2+c+2\right)}=\sqrt{3\left(21+6\right)}=9\)
b.
\(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{3\left(a+b+2+b+c+2+c+a+2\right)}\)
\(\Rightarrow\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{6\left(a+b+c\right)+18}=\sqrt{6.21+18}=12\)
Dấu "=" xảy ra khi \(a=b=c=7\)