K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

* \(2n=2560\Leftrightarrow n=\dfrac{2560}{2}=1280\) vậy \(n=1280\)

* \(3n=729\Leftrightarrow n=\dfrac{729}{3}=243\) vậy \(n=243\)

* \(4n=256\Leftrightarrow n=\dfrac{256}{4}=64\) vậy \(n=64\)

* \(2.2n=256\Leftrightarrow n=\dfrac{256}{2.2}=\dfrac{256}{4}=64\) vậy \(n=64\)

20 tháng 7 2017

\(2n=2560\Rightarrow n=1280\)

\(3n=729\Rightarrow n=243\)

\(4n=256\Rightarrow n=64\)

\(2.2n=256\Rightarrow n=64\)

25 tháng 7 2018

1, Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath

2, \(2n\left(16-n^4\right)=2n\left(1-n^4+15\right)=2n\left(1-n^2\right)\left(1+n^2\right)+30n=2n\left(1-n\right)\left(1+n\right)\left(n^2-4+5\right)+30n\)

\(=-2n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+10n\left(n-1\right)\left(n+1\right)=-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)

Vì n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 3;5 

Mà (3,5) = 1 

=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 15 

=> -2n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.15 = 30 (1)

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 3

=>10n(n-1)(n+1) chia hết cho 10.3 = 30 (2)

Từ (1) và (2) => \(-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\) hay \(2n\left(16-n^4\right)⋮30\left(đpcm\right)\)

21 tháng 2 2021

5050 nha bài này tui hc trong lớp  4 ý :))

16 tháng 2 2021

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

26 tháng 6 2021

`a)(x-1)^2-(x-2)(x+2)`

`=x^2-2x+1-(x^2-4)`

`=-2x+5`

`b)(2x+4)(8x-3)(4x+1)^2`

`=(16x^2-6x+32x-12)(16x^2+8x+1)`

`=(16x^2-26x-12)(16x^2+8x+1)`

`=256x^4+128x^3+16x^2-416x^3-208x^2-26x-192x^2-96x-12`

`=256x^4-288x^3-384x^2-122x-12`

`c)(a+2)^3-a(a-3)^2`

`=a^3+6a^2+12a+8-a(a^2-6a+9)`

`=a^3+6a^2+12a+8-a^3+6a^2-9a`

`=12a^2+3a+8`

10 tháng 2 2021

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)