Tính hợp lý
B=263^2+74.263+37^2
C=136^2-92.136+46^2
D=(50^2+48^2+46^2+....+2^2) - (49^2+47^2+45^2 +.........+ 1^2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(258-242\right)\left(258+242\right)}{\left(254-246\right)\left(254+246\right)}=\dfrac{16}{8}=2\)
b: \(=\left(263+37\right)^2=300^2=90000\)
c: \(=\left(136-46\right)^2=90^2=8100\)
d: \(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
=50+49+...+2+1
=51x50:2=1275
b) \(263^2+74.263+37^2\)
\(=\left(263+37\right)^2\)
\(=300^2\)
\(=90000\)
c) \(136^2-92.136+46^2\)
\(=\left(136-46\right)^2\)
\(=90^2\)
\(=8100\)
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
Tính giá trị biểu thức sau:
a, A= \(258^2-\dfrac{242^2}{254^2}-246^2\approx\) 6047,1
b, B= \(263^2+74.263+37^2=90000\)
c, C= \(136^2-92.136+46^2=8100\)
d, D = \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
= 22100 - 20825= 1275
\(\frac{258^2-242^2}{254^2-246^2}=\frac{\left(258+242\right)\left(258-242\right)}{\left(254+246\right)\left(254-246\right)}=\frac{500.16}{500.8}=2\)
\(263^2+74.263+37^2=263^2+2.37.263+37^2=\left(263+37\right)^2=300^2=90000\)
\(136^2-92.136+46^2=136^2-46.2.136+46^2=\left(136-46\right)^2=90^2=8100\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+.....+\left(2^2-1^2\right)=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+....+\left(2+1\right)\left(2-1\right)=\left(50+49+....+1\right)=\frac{51.50}{2}=51.25=1275\)
Bài 1:
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2=0\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)=0\)
\(\Leftrightarrow2.198+2.204-2.212-2.190=0\)
\(\Leftrightarrow2\left(198+204-212-190\right)=0\)
\(\Leftrightarrow2.0=0\) (đúng)
Bài 2:
a) \(263^2+74.263+37^2\)
\(=263^2+2.37.263+37^2\)
\(=\left(263+37\right)^2\)
b) \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=50^2+48^2+46^2+...+2^2-49^2-47^2-45^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50+49\right)+\left(48+47\right)+\left(46+45\right)+...+\left(2+1\right)\)
\(=50+49+48+47+46+45+...+2+1\)
\(=\dfrac{\left(50+1\right).\left(50-1+1\right)}{2}=1275\)
Kết luận ...