: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O), đường cao AD. Biết AD cắt (O) tại điểm thứ hai M, vé ME vuông góc với AC ( E thuộc AC), đường thẳng ED cắt Ab tại I.
1) C/m tứ giác MDEC nôi tiếp.
2) C/m MI vuông góc với AB
3) c/m AB. AI = AE. AC
4) Gọi N là điểm đối xứng của M qua AB, F là điểm đối xứng của M qua AC, NF cắt AD tại H.
a) C/m AM là phân giác của
b) H là trực tâm của tam giác ABC.
1: góc MDC=góc MEC=90 độ
=>MDEC nội tiếp
2: góc IBM=180 độ-góc ABM
=góc ACM=góc ECM=180 độ-góc EDM=góc IDM
=>IBDM nội tiếp
=>góc MIB+góc MDB=180 độ
=>góc MIB=90 độ
3:
Xét ΔAEM vuông tại E và ΔADC vuông tại D có
góc EAM chung
=>ΔAEM đồng dạng với ΔADC
=>AE/AD=AM/AC
=>AE*AC=AD*AM
Xét ΔADB vuông tại D và ΔAIM vuông tại I có
góc DAB chung
=>ΔADB đồng dạng với ΔAIM
=>AD/AI=AB/AM
=>AD*AM=AB*AI=AE*AC