K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

từ dữ kiện của đề bài cho.

ta cộng lần lượt các vế của đẳng thức với 1 

sau đó quy đồng ta sẽ dễ dàng nhìn thấy x=y=z=t

suy ra P=4

18 tháng 8 2016

Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t

Thay vào P được : \(P=1+1+1+1=4\)

18 tháng 8 2016

Sao thủy

Sao kim

Trái đất

Sao hỏa

Sao mộc

Sao thổ

Sao thiên vương

Sao hải vương

30 tháng 12 2017

Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)

=> Biểu thức = -1-1-1-1 = -4

Nếu x+y+z+t khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3

=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)

=> x=y=z=t

=> A = 1+1+1+1 = 1

Vậy ...........

k mk nha

30 tháng 12 2017

có ghi ngược đề không vậy ạ? :>

14 tháng 1 2016

nếu x+y+z+t khác 0 thi A=4 còn nếu bằng 0 thì bằng-4 tick nha

DD
12 tháng 4 2021

Nếu \(x+y+z+t=0\)suy ra \(P=-1-1-1-1=-4\).

Nếu \(x+y+z+t\ne0\):

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Leftrightarrow x=y=z=t\ne0\).

Khi đó \(P=1+1+1+1=4\).

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU

10 tháng 12 2018

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow1+\frac{y+z+t}{x}=1+\frac{z+t+x}{y}=1+\frac{t+x+y}{z}=1+\frac{x+y+z}{t}\)

\(\Leftrightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)

\(TH1:x+y+z+t=0\left(ĐK:x,y,z,t\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\end{cases}\Rightarrow P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{x+t}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(y+z\right)}}\)=-4

\(TH2:x+y+z+t\ne0\)

\(\Rightarrow x=y=z=t\Rightarrow P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=4\)

Vậy P=4 hay P=-4

Trả lời :..................................

P = 4,..................................

Hk tốt......................................

20 tháng 10 2016

ta có:  \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}.\)

=> 3x = y+z + t ( 1)   ;       3y = z+ t + x (2)    ;       3z = t + x + y (3)      ;      3t = x + y + z  (4)

từ (3) và (4) => x + y = 3t - z = 3 z - t => 4t = 4z => t = z (5) 

từ ( 1) và ( 2) => t + z = 3x - y = 3y - x => x = y ( 6) 

từ (2) và (3) => x + t = 3y - z = 3z - y => y = z (7)

từ ( 5) ; ( 6) và (7) ta có : x = y = z = t  thay vào biểu thức P ta được : P = 4