K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

x+5/2009 + x+4/2010 = x+3/2011 + x+2/2012

=> 1 + x+5/2009 + 1 + x+4/2000 = 1 + x+3/2011 + 1 + x+2/2012

=> x+2014/2009 + x+2014/2000 = x+2004/2011 + x+2014/2012

=> x+2014/2009 + x+2014/2000 - x+2014/2011 - x+2014/2012 = 0

=> (x+2014).(1/2009 + 1/2010 - 1/2011 - 1/2012) = 0

Do 1/2009 > 1/2011; 1/2010 > 1/2012

=> 1/2009 + 1/2010 - 1/2011 - 1/2012 khác 0

=> x + 2014 = 0

=> x = -2014

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

=>x-2014=0

hay x=2014

2 tháng 3 2022

`Answer:`

\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)

\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)

\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Rightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

16 tháng 3 2018

\(5-\frac{x}{2010}+4-\frac{x}{2011}+3-\frac{x}{2012}=6-\frac{x}{2009}+1-\frac{x}{1007}.\)

\(\left(5+4+3\right)-x.\frac{1}{2010}-x.\frac{1}{2011}-x\frac{1}{2012}=\left(6+1\right)-x.\frac{1}{2009}-x\frac{1}{1007}\)

\(12-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=7-x.\left(\frac{1}{2009}+\frac{1}{1007}\right)\)

\(-x.\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)+x.\left(\frac{1}{2009}+\frac{1}{1007}\right)=7-12\)

\(x.\left(\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}\right)=-5\)

\(x=\frac{-5}{\frac{-1}{2010}-\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2009}+\frac{1}{1007}}\)

8 tháng 2 2020

\(\frac{x}{2008}+\frac{x+1}{2009}+...+\frac{x+4}{2012}=5\)

\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+...+\left(\frac{x+4}{2012}-1\right)=0\)

\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+...+\frac{x-2008}{2012}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)=0\)

Mà \(\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)\ne0\)

Nên \(x-2008=0\)

\(\Leftrightarrow x=2008\)

Vậy : \(x=2008\)

8 tháng 2 2020

\(\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}=5\)

\(\Leftrightarrow\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}-5=0\)

\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+\left(\frac{x+2}{2010}-1\right)+\left(\frac{x+3}{2011}-1\right)+\left(\frac{x+4}{2012}-1\right)=0\)

\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+\frac{x-2008}{2010}+\frac{x-2008}{2011}+\frac{x-2008}{2012}=0\)

\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=0\)

Vì \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\ne0\)

\(\Rightarrow x-2008=0\)\(\Leftrightarrow x=2008\)

Vậy \(x=2008\)

21 tháng 3 2016

=> 3x-(1/2013+2/2012+3/2011)=3x-(4/2010+5/2009+6/2008)=>6x=-4/2010-5/2009-6/2008+1/2013+2/2012+3/2011                                                                                       =>x=...                                                                          làm tiếp đi bạn

28 tháng 3 2021

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

=>x-2014=0

hay x=2014

23 tháng 1 2022

giải rõ ra được không?