K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

 A=1.2.3+2.3.4+...+n.(n+1).(n+2)

=>4A=1.2.3.4+2.3.4.4+n(n+1)(n+2).4

=1.2.3.(4-0)+2.3.4.(5-1)+...+n.(n+1)(n+2)[(n+3)-(n-1)]

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1)-n.(n+1).(n+2).(n+3)

=n.(n+1)(n+2)(n+3)

=>4A+1=n(n+1)(n+2)(n+3)+1

=n.(n+3).(n+1)(n+2)+1

=(n2+3n).[n.(n+2)+1.(n+2)]+1

=(n2+3n).(n2+2n+n+2)+1

=(n2+3n).(n2+3n+2)+1

Đặt y=n2+3n

=>4A+1=y.(y+2)+1

=y2+2y+1

=y2+y+y+1

=y.(y+1)+(y+1)

=(y+1)(y+1)

=(y+1)2

Vậy 4A+1 là số chính phương

26 tháng 5 2015

 Ta có: n(n + 1)(n + 2) = n (n + 1)(n + 2). 4= n(n + 1)(n + 2). 
= n(n + 1)(n + 2)(n + 3) -  n(n + 1)(n + 2)(n - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + n( + 1)(n + 2)(n + 3) 
- n(n + 1)(n + 2)(n - 1) = n(n + 1)(n + 2)(n + 3) 
=> 4S + 1 = n(n + 1)(n + 2)(n + 3) + 1

n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n^2+3n) (n^2+3n+2) (*)
Đặt n^2 +3n=t thì (*) = t(t + 2) + 1 = t^2 + 2t + 1 = (t + 1)^2
= (n2 + 3n + 1)^2
Vì n  N nên n^2 + 3n + 1  N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương hau 4S +1 là scp

26 tháng 5 2015

A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

4A+1=n(n+1)(n+2)(n+3)+1=n^4+6.n^3+11.n^2+6n+1=(n2+3n+1)^2

Vậy Chứng minh rằng: 4A + 1 là một số chính phương.

 

9 tháng 4 2016

nhanh hk

9 tháng 4 2016

\(1a.\)

Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Vì  \(n^2+2n+2>n^2-2n+2\)  với mọi  \(n\in N\) 

nên để  \(n^4+4\)  là số nguyên tố thì  \(n^2-2n+2=1\)  \(\Leftrightarrow\)  \(\left(n-1\right)^2=0\)  \(\Leftrightarrow\)  \(n-1=0\)  \(\Leftrightarrow\)  \(n=1\)

Vậy, với  \(n=1\)  thì   \(n^4+4\)  là số nguyên tố

9 tháng 10 2017

c) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Vì: a-b+b-c+c-a=0

Sau đó xét các TH

4 tháng 10 2018

N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)

4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]

4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)

4N = n(n+1)(n+2)(n+3)

4N + 1 = ( n2 + 3n + 1)2 ( đpcm )

21 tháng 12 2017

Ta có: \(E=1.2.3+2.3.4+.....+n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4E=1.2.3.4+2.3.4.\left(5-1\right)+......+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(\Rightarrow4E=1.2.3.4+2.3.4.5-1.2.3.4+....+\) \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow4E=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow4E=n\left(n+3\right)\left(n+1\right)\left(n+2\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt n2 + 3n +1 = y

\(\Rightarrow4E+1=\left(y-1\right)\left(y+1\right)+1=y^2-1+1=y^2\)

\(\Rightarrow4E+1=\left(n^2+3n+1\right)^2\)

Vì n tự nhiên => n2 + 3n + 1 tự nhiên => 4E + 1 là số chính phương

=> đpcm.