Chứng tỏ:
Nếu a+1 và \(2008b^2\) chia hết cho 3 thì \(a+2008b^2\)chia hết cho 3
GIÚP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2008 đồng dư với 1(mod 3)
\(\Rightarrow\)2008b2 đồng dư với 1(mod 3)
mà 2007b2 chia hết cho 3
\(\Rightarrow\)a+(2007b2+1)=a+2008b2
\(\Rightarrow\)a+1+2007b2 chia hết cho 3
vì a+1 chia hết cho 3(gt)
2007b2 chia hết cho 3 (2007 chia hết cho 3)
\(\Rightarrow\)a+2008b2 chia hết cho 3
Ta có : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2008\left(a^2-b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2008b+2008b+1\right)=b^2\) (1)
Mặt khác : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2009a^2-2009b^2+\left(a-b\right)=a^2\)
\(\Leftrightarrow2009\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)
\(\Leftrightarrow\left(a-b\right)\left(2009a+2009b+1\right)=a^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(a-b\right)^2\left(2008a+2008b+1\right)\left(2009a+2009b+1\right)=\left(ab\right)^2\) (*)
Nếu : \(a=b\) thì từ (*)
\(\Rightarrow\hept{\begin{cases}a-b=0\\2008+2008b+1=1\end{cases}}\) đều là số chính phương
Nếu \(a\ne b\) thì từ (*) \(\Rightarrow2008a+2008b+1,2009a+2009b+1\) là số chính phương
Gọi \(\left(2008a+2008b+1,2009a+2009b+1\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2008a+2008b+1⋮d\\2009a+2009b+1⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b⋮d\\2009\left(a+b\right)+1⋮d\end{cases}}\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\left(2008a+2008b+1,2009a+2009b+1\right)=1\)
mà : \(2008a+2008b+1,2009a+2009b+1\) là số chính phương
\(\Rightarrow2008a+2008b+1,2009a+2009b+1\) đồng thời là số chính phương
Nên từ (1) \(\Rightarrow a-b\) là số chính phương.
Vậy : bài toán được chứng minh .
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
Vô lý làm gì có chuyện đó nà chứng minh
mk ko biết nếu biết mk đã giúp bn từ lâu rùi .Sory nha!