tìm x, y thuộc N sao cho x^3 - x^2 - 2xy = y^3 + y^2 +100 ai nhanh mk cho 2 tick từ hai nick của mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=
−
1
9
x4y3(2xy2)2=
−
1
9
x4y3(4x2y4)=
−
1
9
x6y7
b) y=
−
x
3
=> x=-3y
mà x+y=2
=>-3y+y=2 <=> -2y=2 => y=-1 => x=-3y=-3*-1=3
Thay x=3; y=-1 vào M...=>M=
−
1
9
(36)(-17)=81
nhớ nhé!
BÀI 1:
\(3x+23\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)
Ta thấy \(3\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(11\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x+4\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-15\) \(-5\) \(-3\) \(7\)
Vậy \(x=\left\{-15;-5;-3;7\right\}\)
BÀI 2
\(\left(x+5\right)\left(y-3\right)=11\)
\(\Rightarrow\)\(x+5\) và \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau:
\(x+5\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-16\) \(-6\) \(-4\) \(6\)
\(y-3\) \(-1\) \(-11\) \(11\) \(1\)
\(y\) \(2\) \(-8\) \(14\) \(4\)
Vậy.....
bài 1:
3x + 23 chia hết cho x + 4
ta có: 3x + 23 chia hết cho x + 4
mà x + 4 chia hết cho x + 4
=> 3(x + 4) chia hết cho x + 4
=> (3x + 23) - 3(x + 4) chia hết cho x + 4
3x + 23 - 3x - 12 chia hết cho x + 4
=> 11 chia hết cho x + 4
=> x + 4 thuộc Ư(11)
mà Ư(11)= {-11;-1;1;11}
=> x + 4 thuộc {-11;-1;1;11}
=> x thuộc {-15;-5;-3;7}
Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4
bài 2:
(x + 5).(y-3) = 11
ta có bảng:
x + 5 -11 -1 1 11
y - 3 -1 -11 11 1
x -16 -6 -4 6
y 2 -8 14 4
vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11
Chúc bạn học giỏi ^^
\(x,y\inℤ\)phải không?
Ta có:
\(\left(x^2y^2+4x^2+2y^2-4\right)-\left(x^2y^2+5x^2+y^2-3\right)=0\)\(=0\)
\(\Rightarrow x^2y^2+4x^2+2y^2-4-x^2y^2-5x^2-y^2+3=0\) (bỏ ngoặc đổi dấu)
\(\Rightarrow\left(x^2y^2-x^2y^2\right)+\left(4x^2-5x^2\right)+\left(2y^2-y^2\right)+\left(-4+3\right)=0\)
\(\Rightarrow0-x^2+y^2-1=0\)
\(\Rightarrow y^2-x^2=1\)
\(\Rightarrow\left(y-x\right)\left(y+x\right)=1\)
Vậy ta có
\(\left(y-x\right)=1;\left(y+x\right)=1\)\(\Rightarrow y=1;x=0\)
Hoặc \(\left(y-x\right)=-1;\left(y+x\right)=-1\)\(\Rightarrow y=-1;x=0\)
Vậy ...
(Không biết đúng không nữa, nếu thấy đúng thì t***k mik nhé!)
\(2^x+\left(x^2+1\right)\left(y^2-6y+8\right)=0\)
\(\Rightarrow\hept{\begin{cases}2^x=0\\\left(x^2+1\right)\left(y^2-6y+8\right)=0\end{cases}}\)( đây là phép đồng thời do có phép cộng ngăn đôi 2 vế )
Vế 1 : \(2^x=0\Rightarrow x\)ko tồn tại
=> phương trình trên sai vì ta phải thỏa mãn đồng thời 2 vế = 0
1.
PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$
$\Leftrightarrow (x+y)^2-(y+3)^2=0$
$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$
$\Leftrightarrow (x-3)(x+2y+3)=0$
$\Rightarrow x-3=0$ hoặc $x+2y+3=0$
Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.
Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.
2.
PT $\Leftrightarrow x^2=(y^2+2y+1)+12$
$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$
$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:
TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$
TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$
TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$
TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
\(x^3-y^2-2xy=y^3+y^2+100.\)
\(\Leftrightarrow\left(x^3-y^2-2xy\right)-\left(y^3+y^2\right)=100\)
\(\Leftrightarrow x^3-y^2-2xy-y^3-y^2=100\)
\(\Leftrightarrow x^3-2y^2-2xy-y^3=100\)
x=4 y=5
k nha