K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

 

Vì 23n-2 là số nguyên tố => 23n-2 >1  mà 23n-2 là số chẵn => số nguyên tố chẵn duy nhất là 2 

=>2 3n -2  là số nguyên tố => 3n -2 =1  => n =1

 

17 tháng 7 2017

Để : \(\frac{n+7}{3n-1}\in N\) 

Thì n + 7 chia hết cho 3n - 1

<=> 3n + 21 chia hết cho 3n - 1

<=> 3n - 1 + 22 chia hết cho 3n - 1

=> 22 chia hết cho 3n - 1

=> 3n - 1 thuộc Ư(22) = {22;11;2;1}

Ta có bảng : 

3n - 1221121
3n231232
n 41 
AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$