cho tam giác abc cân tại a có AB=AC=5cm, BC=8cm. kẻ AH vuông góc với BC (H thuộc BC) a) chứng minh HB=HC và góc BAH= góc CAH. b) tính độ dài AH. c) kẻ HD vươong góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB=AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB=HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB=HC( cmt)
=> H trung điểm BC
Ta có: HB=HC=BC/2=8/2=4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2= AH^2+HB^2 (pytago)
=>AH^2= AB^2-HB^2
AH^2= 5^2-4^2
AH^2=25-16
AH^2=9
AH= căng 9
=> AH= 3cm
Vậy AH=3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)
=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)
=> AD=AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B= (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D= (180 độ - góc A)/2 (định lí)
=> Góc B= Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(Hai góc tương ứng)
tự vẽ hình nha :
xét tam giác ABH và tam giác ACH có:
AB=AC
góc ABH= góc ACH
góc AHB= góc AHC
=>tam giác abh = tam giác ach(ch-gn)
=>hb=hc=>bah=Cah
có hb=hc =bc/2=8/2=4
xét tam giác abh
ab^2=bh^2+Ah^2
=>ah^2=9=>ah=3
c)xét tam giác bdh vg tai d
tam giác ceh vg tại e
bh=hc cm trên
góc b=góc c
=> tam giác dbh =tam giác ech
=>db=ec
=>ad=ae=.. tam giác ade cân
tam giác abc cân tại a
tam giác ade cân tại a góc a chung =>góc ade= góc aed=góc b =bóc c
vì aed=góc c=>de//bc đồng vị
a) Chứng minh được tam giác ABH= tam giác ACH (ch-cgv)
Suy ra: HB=HC (2 góc tương ứng). Vậy H là trung điểm BC.
Suy ra HB=HC=BC:2=8:2=4
và góc BAH=góc CAH.
b) Ta có: tam giác ABH vuông tại H(AH vuông góc BC)
Suy ra AH^2 + BH^2 =AB^2
Suy ra AH^2+4^2= 5^2
Suy ra AH^2= 9
Mà AH>0
Suy ra AH=3
c) Xét tam giác ADH và tam giác AEH có:
+ Góc ADH = Góc AEH = 90o (HD vuông góc AB, HE vuông góc AC)
+ AH là cạnh chung
+ Góc DAH= Góc EAH(do tam giác ABH= tam giác ACH)
=> tam giác ADH = tam giác AEH (ch-gh)
Suy ra HD=HE (2 góc tương ứng)
Suy ra tam giác HDE cân tại H.
Xét ΔAHBvà ΔAHCΔAHBvàΔAHCcó:
AHBˆ=AHC=ˆAHB^=AHC=^90 độ ( gt )
AH là cạnh chung
AB=AC=5cm ( gt )
Do đó: ΔABH=ΔACHΔABH=ΔACH( cạnh huyền-cạnh góc vuông)
⇒HB=HC⇒HB=HC( 2 cạnh tương ứng )
b) Ta có: HB = HC = 12.BC=12.8=82=412.BC=12.8=82=4 cm
Áp dụng định lí Py-ta-go vào ΔAHBΔAHB vuông tại H, ta có:
BA2=BH2+AH2BA2=BH2+AH2
hay: 52=42+AH2⇒AH2=52−42=52=42+AH2⇒AH2=52−42= 25 - 16 = 9 = 3232
Vậy AH = 3 cm.
c) Xét ΔHDBvà ΔHECΔHDBvàΔHEC, ta có:
HDBˆ=HECˆHDB^=HEC^ = 90 độ ( gt )
BH = CH ( câu a )
Do đó: ΔHDB=ΔHECΔHDB=ΔHEC( cạnh huyền - góc nhọn )
⇒DH=HE⇒DH=HE ( 2 cạnh tương ứng ) (1)
Từ (1) => ΔHDEΔHDE cân tại H.
Chúc bạn học tốt ( tớ có 2 cách làm nhưng bạn kẻ hình nhé )
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Trả lời:
a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB = AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB = HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b) Ta có: HB = HC = BC2=82=4(cm)BC2=82=4(cm)
ΔABHΔABH vuông tại H, theo định lí Py-ta-go
Ta có: AB2 = AH2 + HB2
=> AH2 = AB2 - HB2
AH2 = 52 - 42
AH2 = 9
Vậy: AH = 9–√=3(cm)9=3(cm)
c) Xét hai tam giác vuông BDH và CEH có:
HB = HC (cmt)
Bˆ=CˆB^=C^ (do ΔABCΔABC cân tại A)
Vậy: ΔBDH=ΔCEH(ch−gn)ΔBDH=ΔCEH(ch−gn)
Suy ra: HD = HE (hai cạnh tương ứng)
Do đó: ΔHDEΔHDE cân tại H
~Học tốt!~
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
bạn ơi, cho mình xem hình vẽ với