K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Nhân cả 2 với (\(\sqrt{2015^2-1}\)+\(\sqrt{2014^2-1}\))

A = 2015^2 -1 -2014^2 + 1 = (2014 + 1)^2 -2014^2 = 2.2014 + 1

B = 2.2014

=> A = B + 1

b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\) 

=> đpcm

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

17 tháng 10 2016

1212;

1212;

1212.

k cho mình nhé.

17 tháng 10 2016

1212

tk nhe@@@@@@@@@@@!!

aitk minh minh tk lai

bye