Các bạn cho mình hỏi !
Tròng tam giác đồng dạng nó có tính chất : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\) và \(\dfrac{a}{b+a}=\dfrac{c}{c+d}\)
Thì cái này chứng mình thế nào để ra được như vậy ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (đpcm)
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)
\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\dfrac{a\cdot a\cdot a}{b\cdot b\cdot b}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)
Hằng đẳng thức:
\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)
\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)
Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\); \(z=\dfrac{1}{c}\) là ra cái người ta làm
`a/b<(a+c)/(b+d)`
`<=>a(b+d)<b(a+c)`
`<=>ab+ad<ad<bc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)
`(a+c)/(b+d)<c/d`
`<=>d(a+c)<c(b+d)`
`<=>ad+cd<bc+dc`
`<=>ad<bc`
`<=>a/b<c/d`(theo giả thiết)`
`=>a/b<(a+c)/(b+d)<c/d`
Quang Nhân Nguyễn Lê Phước Thịnh
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\Rightarrow\dfrac{b}{a}+1=\dfrac{d}{c}+1\Rightarrow\dfrac{b+a}{a}=\dfrac{c+d}{c}\Rightarrow\dfrac{a}{b+a}=\dfrac{c}{c+d}\)